

UNIVERSIDAD DE GRANADA

GRADO EN INFORMACIÓN Y DOCUMENTACIÓN

TRABAJO FIN DE GRADO TENDENCIAS EN LA DISTRIBUCIÓN GEOGRÁFICA DE LA PRODUCCIÓN CIENTÍFICA EN EL S. XXI

Presentado por:

D./Da. Manuel Álvarez Daza

Tutor:

Prof. Dr. Evaristo Jiménez Contreras

Curso académico 2018 / 2019

- 2	-	

D.: Evaristo Jiménez Contreras, tutor/a del trabajo titulado **Tendencias en la distribución geográfica de la producción científica en el s. XXI** realizado por el alumno/a **Manuel Álvarez Daza**, INFORMA que dicho trabajo cumple con los requisitos exigidos por el Reglamento sobre Trabajos Fin del Grado en *Información y Documentación* para su defensa.

Granada, __23____ de ____Noviembre____ de ___2018__

Fdo.: Evaristo Jiménez Contreras

- 4 -	

Por la presente dejo constancia de ser el/la autor/a del trabajo titulado

Tendencias en la distribución geográfica de la producción científica en el s. XXI que

presento para la materia Trabajo Fin de Grado del Grado en Información y

Documentación, tutorizado por el profesor D. Evaristo Jiménez Contreras durante el

curso académico 2018 - 2019.

Asumo la originalidad del trabajo y declaro que no he utilizado fuentes (tablas,

textos, imágenes, medios audiovisuales, datos y software) sin citar debidamente,

quedando la Facultad de Comunicación y Documentación de la Universidad de Granada

exenta de toda obligación al respecto.

Autorizo a la Facultad de Comunicación y Documentación a utilizar este

material para ser consultado con fines docentes dado que constituyen ejercicios

académicos de uso interno.

23 /Noviembre / 2018

Fecha

Firmado: Manuel Álvarez Daza

- 5 -

AGRADECIMIENTOS

Quiero agradecer la ayuda y el interés de mi tutor para el Trabajo Fin de Grado, D. Evaristo Jiménez Contreras, así como al Sr. Decano de la Facultad de Comunicación y Documentación D. Jorge Bolaños Carmona su interés y ayuda manifiesta.

También a mi familia que en definitiva es la sufridora del tiempo que se ha dedicado a este trabajo.

ÍNDICE

RESUMEN	11
Abstract	11
1 INTRODUCCIÓN	13
2 OBJETIVOS	14
3 METODOLOGÍA	15
3.1 Contraste χ2 de Pearson sobre homogeneidad de dos o más poblaciones	18
3.2. Contraste de Kolmogorov-Smirnov sobre bondad de ajuste	21
4 DESARROLLO.	23
4.1. Datos obtenidos.	23
4.2. Resultados	25
4.2.1. Resultados contraste χ2 de Pearson sobre homogeneidad	25
4.2.2. Resultados contraste de Kolmogorov-Smirnov sobre bondad de ajuste	26
4.3 Discusión de los resultados	33
4.3.1 Contraste χ2 de Pearson sobre homogeneidad	33
4.3.2 Contraste de Kolmogorov-Smirnov sobre bondad de ajuste	35
5. CONCLUSIONES.	36
BIBLIOGRAFÍA	37
ANEXOS	39
ANEXO I. Tablas estadísticas.	39
Puntos críticos del test de Kolmogorov-Smirnov	39
Cuantiles de la distribución χ2 de Pearson.	40
ANEXO II. Contrastes χ2 de Pearson sobre homogeneidad para cada categoría	42
ANEXO III. Contrastes de Kolmogorov-Smirnov sobre bondad de ajuste para cada categorí	a 53
ÍNDICE DE TABLAS	
Tabla 1. Ejemplo Contraste χ2 de Pearson sobre homogeneidad. Tablas de frecuencias	19
Tabla 2. Ejemplo Contraste χ2 de Pearson sobre homogeneidad. Tablas de frecuencias esperadas	20
Tabla 3. Contraste K-S. Cambio de variable cualitativa nominal a cualitativa ordinal	22
Tabla 4. Contraste K-S. Ejemplo de tabla creada para su aplicación	22
Tabla 5. Categorías seleccionadas	24
Tabla 6. Fiemplo de datos de entrada	25

Tabla 7. Resultados χ2 de Pearson para Top 1%	25
Tabla 8. Resultados χ2 de Pearson para Top (10-1)%	26
Tabla 9. Resultados contraste K-S para Top 1%	26
Tabla 10. Resultados contraste K-S para Top (10-1) %	27
Tabla 11. Contraste K-S. Paises que más modifican la distribución	28
Tabla 12. Paises que más han influido en la distribución con número de categorías afectadas	s. 2 9
Tabla 13. Influencia en la variación del modelo por regiones del mundo. Top 1%	31
Tabla 14. Influencia en la variación del modelo por regiones del mundo. Top (10-1)%	32
Tabla 15. Categoria Healt Care & Services. Agrupación de clases para aplicar contraste χ2 de Pearson en Top 1%	
Tabla 16. Categoria Robotics. Agrupación de clases para aplicar contraste χ2 de Pearson en 1%	
Tabla 17. Categoria Women´s Studies. Agrupación de clases para aplicar contraste χ2 de Pearson en Top (10-1)%	34
Tabla 18. Categoria Healt Care & Services. Agrupación de clases para aplicar contraste χ2 de Pearson en Top (10-1)%.	
ÍNDICE DE GRÁFICOS	
Gráfico 1. Influencia por paises en el cambio de modelo. Para el Top 1%	30
Gráfico 2. Influencia por paises en el cambio de modelo. Para el Top (10-1)%	30
Gráfico 3. Influencia en la variación del modelo por regiones del mundo. Top 1%	31
Gráfico 4. Influencia en la variación del modelo por regiones del mundo. Top (10-1)%	32

RESUMEN

Con las nuevas incorporaciones de productores científicos en los inicios del s. XXI, se estudia si los países considerados grandes productores de publicaciones científicas consiguen la variación de los modelos de distribución geográfica de la citación de dichas publicaciones. Para conocer si los nuevos actores además de grandes producciones obtienen mayores visibilidades se analizan los trabajos publicados en el Top 1% y Top 10% en los años 2000 y 2015, usando contrastes estadísticos no paramétricos, como el χ^2 de Pearson sobre homogeneidad y el contraste de Komogorov-Smirnov sobre bondad de ajuste, se demuestra que cambian los modelos de distribución así como que los países que más provocan la variación no son los países asiáticos.

Abstract

With the new incorporations of scientific producers at the beginning of the 21th century, it is studied if the countries considered as major producers of scientific publications get the variation of the geographical distribution models of the citation of said publications. In order to know if the new actors in addition to large productions obtain greater visibilities, we analyze the works published in the Top 1% and Top 10% in the years 2000 and 2015, using non-parametric statistical contrasts, such as Pearson's $\chi 2$ on homogeneity and contrast of Komogorov-Smirnov on goodness of fit, it is shown that the distribution models change as well as the countries that cause the most variation are not the Asian countries

1.- INTRODUCCIÓN

En los inicios del siglo XXI se ha experimentado grandes cambios en las regiones productoras de publicaciones científicas, siendo China el gran motor de este movimiento, con un crecimiento exponencial en publicaciones, mientras que Estados Unidos estaría estancado, y Europa presenta un crecimiento más tranquilo, apoyado principalmente por la incorporación de los países del Este (Scimago, 2007).

Para el estudio del desarrollo científico es posible usar el número de publicaciones científicas generadas por un país (Galvez *et al.*, 2005), aunque siempre hay que tener en cuenta que una gran producción de publicaciones no implica una gran calidad en dichas publicaciones, una forma sería analizar las citas recibidas por dichas publicaciones, aunque en definitiva siempre van a ser métodos indirectos de evaluar la calidad de un trabajo.

Dentro de este ámbito hay que entender que el estudio de la actividad científica se puede realizar desde muchos puntos de vista, uno de los cuales es trabajar con las fuente genuinas de dicha actividad que van a ser los trabajos científicos publicados, los cuales se encuentran recogidos en distintas bases de datos en las cuales se recogen dichos trabajos en base unos criterios que trabajan para seleccionar las mejores publicaciones. Para ajustarse a criterios de calidad se utilizan las citas, las cuales representan por el momento una de la mejores formas de estimación de la calidad.

De forma intuitiva podemos notar que los países asiáticos en el inicio del s. XXI son los que presentan mayores tasas de crecimiento en la producción de trabajos científicos debido al auge de sus economías, esta medida intuitiva se ve avalada por los datos que señalan que dichos países tienen tasas de crecimiento en la producción de documentos científicos, mucho más altas que el resto del mundo, como por ejemplo China que crece alrededor del 20% anual (Scimago, 2008), aunque también se constata que cuando hablamos de visibilidad pocos de estos países parecen sustentarse en los primeros puestos de trabajos más citados (Scimago, 2008).

Una forma de analizar la visibilidad se basa en trabajar con percentiles sobre el total de datos, o sea, dividir la totalidad en parcelas, de tal forma que no se vean los datos de forma individual sino como un conjunto para toda la clase (Bornmann, Leydesdorff y Mutz, 2013), con lo cual podemos tener una perspectiva más global que

el interpretar un único dato numérico.

Dentro de la Unión Europea, los Estados Unidos y China se producen la mayor parte de los trabajos más citados, pero hay que tener en cuenta que dichos trabajos en la actualidad no son solo producto de los investigadores de un país sino que se producen multitud de colaboraciones que conducen al trabajo final, por tanto, un análisis global de la situación requeriría tener en cuenta las redes de coautoría que se están produciendo a nivel global (Leydesdorff, Wagner y Bornmann, 2014).

Por último, también hay que tener en cuenta en este tipo de análisis la economía de los países productores, ya que es innegable que los países más fuertes económicamente pueden destinar mayores recursos a sus científicos, por lo que se puede crear un núcleo de países que destinan mucho dinero a investigación, rodeado de países menos ricos que intentan aprovechar el desarrollo producido por los países ricos (Arunachalam, 2004), esto hace que incremente la coautoría, de tal forma que podría pensarse que está destinada a aumentar la visibilidad de dichos países .

2.- OBJETIVOS

La idea que subyace al estudio de la producción científica es que el desarrollo en investigación y ciencia va asociado a una mayor producción, por lo que una nación se encuentra más desarrollada cuanto mayor es su producción científica (Galvez *et al.*, 2005), ante esta idea se pone de manifiesto la necesidad de interpretar si dicha producción tiene realmente una calidad suficiente como para suponer un progreso significativo dentro de la ciencia, o sea interpretar la relación producción versus calidad (Scimago, 2007).

Dentro del contexto de este estudio formulamos la hipótesis de que la mayor producción científica de los nuevos actores económicos no ha variado la distribución de mayor citación hacia la publicaciones de los países considerados, tradicionalmente, como más desarrollados científicamente.

El problema que presenta esta hipótesis se traduce en el tradicional problema de comparar peras con manzanas, ya que no podemos realizar una comparación a nivel de toda la producción científica de una nación debido a que cada una de las áreas o categorías en que podemos dividir el conocimiento científico, tiene sus propias peculiaridades (Leydesdorff y Zhou, 2005), por lo tanto necesitamos realizar análisis basándonos en divisiones de la producción total.

Tanto el aceptamos, como si rechazamos la hipótesis propuesta, un objetivo a realizar es situarnos en un escenario en el cual realizamos un estudio atendiendo a técnicas estadísticas mediante las cuales se usa un criterio que une la producción científica y la citación de los trabajos publicados, por supuesto, entendiendo que dicho criterio no va a evaluar la calidad de los trabajos publicados sino que se basa en la visibilidad de dichos trabajos, por tanto lo que se pretenden es realizar una aproximación a dichas tendencias mediante las técnicas estadísticas.

3.- METODOLOGÍA

El estudio se va a realizar en base a un análisis longitudinal de los trabajos publicados en los años 2000 y 2015 en la base de datos Colección principal de Web of Science.

En nuestro caso hemos utilizado medidas directas asociadas al impacto de los trabajos científicos, como son las citas recibidas por dichos trabajos, desestimando por el momento las medidas secundarias de impacto como pueden ser los indicadores asociados a las revistas como pueden ser FI y SJR.

Se ha tomado una muestra de tipo intencional de las categorías que aparecen en la base de datos, la selección de categorías se ha realizado incluyendo categorías englobadas en áreas correspondientes a todas las áreas científicas, intentando también que se vean representadas ingenierías y tecnologías.

Una vez determinadas las categorías a extraer se han realizado consultas en la base de datos usando para ello el apartado «Búsqueda avanzada» en el cual se ha especificado la categoría usando comodines de tal forma que en varias de las categorías no se seleccionan de forma individual sino que se seleccionan por familias que tienen una raíz común en su definición en la base de datos, para finalizar la consulta también se ha especificado el año de publicación, en un caso es el año 2000 y la consulta se vuelve a repetir para obtener los datos correspondientes al año 2015.

Los datos obtenidos corresponden al total de publicaciones, con tipología de

artículo científico, en cada uno de los dos años establecidos para las categorías seleccionadas, por tanto para cada una de las selecciones se toman los datos correspondientes al total de la población, no se ha tenido en cuenta el hecho de que algunas publicaciones podrían aparecer en más de una categoría, por lo que dichos trabajos se mantienen como datos para cada una de las categorías que tengan señaladas en la base de datos. Los datos se extrajeron de la base de datos entre los meses de Junio y Julio de 2018.

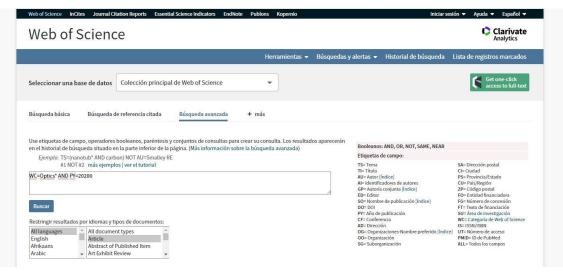


Ilustración 1. Ejemplo de una búsqueda avanzada realizada.

Con los datos en bruto obtenidos de la base de datos y usando el programa Bibexcel¹ (Persson, Danell y Schneider. 2009), se ha elaborado para cada una de las categorías y año estudiado, una tabla en la que se recoge el país y el número de citas de cada artículo.

Para identificar el país se ha utilizado la dirección del primer autor firmante, esto hace que se pierdan muchos datos, conociendo que la elite de científicos son los que disponen de una mayor red de trabajo a nivel internacional (Leydesdorff, Wagner y Bornmann, 2014) y que la coautoría podría ser una forma en la que muchas naciones pueden conseguir más visibilidad en los trabajos que publican, pero para este trabajo se ha preferido tomar una única referencia geográfica para cada uno de los artículos, con esta consideración hay que respetar los resultados obtenidos ya que en ningún caso van a ser exhaustivos, como se expresó al manifestar los objetivos de este estudio, solo

¹ Software disponible en la url: https://homepage.univie.ac.at/juan.gorraiz/bibexcel/

pretende ser una primera aproximación sobre el tema en cuestión.

El resto de tratamiento de los datos se ha realizado usando las aplicaciones de software «Microsoft Excel» y «Microsoft Access», o sea, utilizando una hoja de cálculo y un gestor de bases de datos.

Los datos a estudiar se han obtenido a partir del Top 10% y Top 1%, en referencia al 10% y al 1% respectivamente de los artículos más citados dentro de cada uno de los grupos de categorías que se han definido. Y una vez obtenidos los listados correspondientes se agrupan las citas para cada uno de los países que quedan reflejados en dichos intervalos.

Teniendo en cuenta que estamos estudiando variaciones en la distribución de citas, para subdividir los datos en los dos grupos denominados Top, se ha realizado una aproximación consistente en retirar del conjunto de datos correspondiente al Top 10% los datos que ya se tienen en el grupo del Top 1%, de tal forma que pasamos a denominarlo Top (10-1)%, no llamándolo 9% para evitar confusiones. Así que estudiamos una Super-elite formada por el Top 1% y una Elite podríamos decir "menor" formada por los trabajos que van detrás de dicho Top 1%. De tal forma que se puede considerar que el estudio de las naciones productoras de publicaciones científicas se puede dividir en los correspondiente percentiles que resultarán más representativos a nivel de grupo (Bornmann, Leydesdorff y Mutz, 2013).

El conjunto de datos Top (10-1%) abarca todos los artículos publicados en la base de datos para la categoría y año correspondientes, menos los datos en común con el conjunto Top 1%. El motivo de esta separación es que queremos evitar que el efecto de los trabajos con un nivel muy superior de citación, ya que dicho efecto se estudia en su conjunto de datos y en el siguiente nivel intentamos conocer si existe una segunda tipología de distribución que no se vea enmascarada por el efecto de las superpotencias científicas en determinadas áreas.

3.1.- Contraste $\chi 2$ de Pearson sobre homogeneidad de dos o más poblaciones.

Sobre estos datos vamos a estudiar en primer lugar si las poblaciones correspondientes al año 2000 y al año 2015 son homogéneas, los cual nos indicaría que en el transcurso de los años no ha cambiado el tipo de distribución de la citación con respecto a los distintos países. Para alcanzar este objetivo se usa un contraste no paramétrico, en concreto el Contraste $\chi 2$ de Pearson sobre homogeneidad de dos o más poblaciones.

El contraste $\chi 2$ de Pearson de homogeneidad supone que tenemos un número de poblaciones de las cuales observamos una misma variable aleatoria cualitativa nominal, en nuestro caso dicha variable van a ser los países extraídos de la dirección de publicación del primer autor firmante.

En este contraste la hipótesis nula H_0 corresponde al supuesto en que las poblaciones son homogéneas, o sea, tienen la misma distribución, frente a la hipótesis H_1 en la cual las poblaciones no son homogéneas.

Para descartar la hipótesis nula debemos calcular el estadístico $\chi 2$ de forma experimental y compararlo con el mismo estadísticos calculado a través de tablas en las cuales podemos obtener la información a partir del número de poblaciones y de muestras aplicando un nivel de significación, en este caso, entendiendo que la variación en la distribución de citación de los distintos países a lo largo de 15 años puede ser significativa vamos a aplicar un nivel de significación de 0.05.

El cálculo del estadístico de forma experimental se realiza a través de la fórmula:

$$\chi 2_{exp} = \sum_{1}^{r} \sum_{1}^{k} \frac{(f_{ij} - e_{ij})^{2}}{e_{ij}}$$

En donde:

- r = número de muestras aleatorias simples.
- k= número de clases representadas en las muestras.
- e_{ij} = frecuencias esperadas si la hipótesis nula fuese cierta.

Para el cálculo de e_{ij} se usa la siguiente fórmula:

$$e_{ij} \frac{\sum_{1}^{i} f_{ij} \circ \sum_{1}^{j} f_{ij}}{n}$$

Donde:

- n= tamaño de población.
- f_{ii} = frecuencia de cada una de las clases.

Las condiciones que impone este contraste para poder utilizarse son dos:

- $e_{ij} \ge 1$ para todas las clases.
- $e_{ij} \ge 5$, salvo para un 20% de las clases como máximo.

En este contraste la hipótesis nula H_0 se rechazará cuando el valor de $\chi 2_{exp}$ sea mayor o igual que el valor correspondiente a $\chi 2$ teorico, extraido de las tablas en base al número de grados de libertad y al nivel de significación deseado.

A modo de ejemplo que insertan las tablas obtenidas para una de las categorías seleccionadas, el resto de tablas pueden consultarse en los anexos a este estudio.

Contraste x2	de Pearso	n de homos	reneidad				
TOP (10-1)%9			,				
fo	bservadas	sin agrupai	r	Tak	ola Frecuenc	ias observa	das
SUMA	181	527	708	SUMAS	181	527	708
Paises / Año	2000	2015	SUMA	Paises / Año	2000	2015	SUMA
Argentina	1	0	1	USA	100	178	278
Australia	7	18	25	UK	19	44	63
Austria	1	1	2	Peoples R Ch	5	53	58
Belgium	2	6	8	Netherlands	8	26	34
Brazil	0	1	1	Canada	12	17	29
Canada	12	17	29	Spain	1	25	26
Chile	0	1	1	Australia	7	18	25
Czech Repub	0	1	1	Germany	2	23	25
Denmark	4	7	11	Taiwan	2	21	23
Estonia	0	1	1	Resto	25	122	147
Finland	2	7	9				
France	1	9	10				
Germany	2	23	25				
Ghana	0	1	1				
Greece	0	2	2				
Hungary	0	1	1				

Tabla 1. Ejemplo Contraste χ2 de Pearson sobre homogeneidad. Tablas de frecuencias

En la Tabla 1 podemos observar que se han realizados dos listados de datos, en primer lugar aparecen las frecuencias observadas sin agrupar y en segundo las frecuencias observadas, esta última parte incluye el agrupamiento de aquellos datos que hacen que el contraste no se pueda aplicar, ya que si no hacemos esta agrupación nos aparecen frecuencias esperadas (e_{ij}) con valores inferiores a 5, e incluso casos con valor inferior a 1, lo cual está expresamente prohibido para poder aplicar este contraste, la

forma más usual de salvar este problema es el agrupamiento de datos hasta conseguir que no se produzcan estos problemas.

Contraste x	2 de Pearso 6%	n de home	ogeneidad			
			T 1.1. (C	,2		40.00
Tab	la e _{ij}			$-e_{ij})^2/e_{ij}$	χ2 _{exp} =	48,83
		Sumas	36,35	12,48		
71,07	206,93		11,78	4,04	Num. Clases =	10
16,11	46,89		0,52	0,18		
14,83	43,17		6,51	2,24		
8,69	25,31		0,06	0,02		
7,41	21,59		2,84	0,97		
6,65	19,35		4,80	1,65		
6,39	18,61		0,06	0,02		
6,39	18,61		3,02	1,04		
5,88	17,12		2,56	0,88		
37,58	109,42		4,21	1,45		

Tabla 2. Ejemplo Contraste χ2 de Pearson sobre homogeneidad. Tablas de frecuencias esperadas

En la tabla 2 podemos observar que el siguiente paso es crear otra tabla en la cual se realizan los cálculos para obtener las frecuencias esperadas (e_{ij}) , así como una tabla complementario para ayudar en el cálculo de las sumatorias que implican el cálculo del estadístico de forma experimental. También realizamos los cálculos de dicho estadístico y el número de clases que nos va a permitir calcular el número de grados de libertad.

Los grados de libertad se calculan mediante el siguiente producto:

$$Grados\ Libertad = (1-r)(1-k)$$

Donde:

- r corresponde al número de clases, dato que hemos calculado mediante conteo de las clases relacionadas en las tablas.
- k representa el número de muestras que se han tomado, en nuestro caso el valor es igual a 2, ya que sólo hemos tomado muestras para los años 2000 y 2015.

Para obtener el valor teórico del estadístico se han usado las tablas de la distribución χ2 de Pearson que se incluyen en los anexos al trabajo.

3.2. Contraste de Kolmogorov-Smirnov sobre bondad de ajuste.

El siguiente contraste que se realizará sobre los datos será otra técnica estadística no paramétrica, el contraste de Komogorov-Smirnov (K-S) sobre bondad de ajuste, que nos permite realizar una medida sencilla de la discrepancia entre lo propuesto como hipótesis y lo observado, este contraste nos permitirá analizar qué país o países son los que introducen discrepancias entre las distribuciones antiguas y las más modernas de citación en relación a los distintos países, o sea, que país o países son los que hacen que la distribución original en el año 2000 se haya alterado en el año 2015.

Este contraste considera una variable aleatoria, que en una determinada población, se desconoce su función de distribución, entonces extrayendo una muestra aleatoria simple, usamos como estimador las frecuencias relativas acumuladas de la muestra.

En este caso el estadístico para realizar el contraste de bondad del ajuste es:

$$D = m\acute{a}x |F_I^0 - H_i|$$

Donde:

- D es el estadístico para el contraste.
- F_I^0 es el valor de la función de distribución teorica evaluada en el dato i-ésimo.
- H_i es la frecuencia relativa acumulada del dato.

Condiciones para poder aplicar este contraste:

- La única condición que tiene que verificarse es que la variable no sea cualitativa nominal.

En este momento tenemos que actuar sobre la variable, ya que la variable que estamos usando son los países de origen de los trabajos científicos publicado extraídos a partir de la dirección del primer firmante del trabajo. O sea, estamos usando una variable cualitativa nominal, lo cual hace que no se verifique la condición para poder aplicar este contraste.

Como en el caso anterior existen formas y procedimientos para actuar en estos casos, y en nuestro caso, la forma más fácil y usual de solucionarlo es asignar un número a cada una de las apariciones de la variable, o dicho de otro modo, numerar los países.

Pais	X _i
Australia	1
Canada	2
Czech Republic	3
Denmark	4
Finland	5
France	6
Germany	7
Greece	8

Tabla 3. Contraste K-S. Cambio de variable cualitativa nominal a cualitativa ordinal.

Con esta transferencia hacia una variable cualitativa ordinal ya estamos en disposición de cumplir la condición para poder aplicar el contraste K-S sobre bondad del ajuste.

La hipótesis nula H_0 para este contraste establece que la variable aleatoria observada en la población es Normal, mientras que la alternativa H_1 establecería que la población no es Normal.

Para determinar si se rechaza o no la hipótesis nula, una vez calculado el estadístico D, lo compararemos con el valor obtenido a través de tablas (se incluyen en anexo) del valor $d_{n,\alpha}$, donde n señala el tamaño de la población, y α es el nivel de significación, en este caso también usaremos un nivel de significación igual a 0.05.

Para la aplicación de este contraste usamos el método tradicional de crear una tabla con los diferentes parámetros que usaremos para llegar a calcular el estadístico D.

Pais	Xi	p _i	F _i ⁰	f _i	h _i	H _i	F _i ⁰ - H _i
Australia	1	0	0	337	0,01927036	0,01927036	0,01927036
Canada	2	0,02600481	0,02600481	1217	0,06959058	0,08886093	0,06285612
Czech Republic	3	0	0,02600481	69	0,00394556	0,0928065	0,06680168
Denmark	4	0,02277217	0,04877698	295	0,01686871	0,10967521	0,06089822
Finland	5	0	0,04877698	142	0,00811985	0,11779506	0,06901808
France	6	0,01576811	0,0645451	409	0,02338747	0,14118253	0,07663743
Germany	7	0,00923099	0,07377609	427	0,02441674	0,16559927	0,09182318

Tabla 4. Contraste K-S. Ejemplo de tabla creada para su aplicación.

En la tabla 4 quedan reflejadas las distintas columnas utilizadas para la aplicación del contraste K-S. Los elementos que figuran son:

- x_i, representa los valores de la variable aleatoria, en nuestro caso la hemos convertido en una variable cualitativa ordinal.
- p_i, forma la distribución teórica, es la probabilidad correspondiente al

valor de la variable.

- F_i⁰ es el valor de la función de distribución teórica evaluada en el valor de la variable. En nuestro caso lo calculamos como la probabilidad acumulada correspondiente al valor de la variable.
- f_i representa la frecuencia absoluta.
- h_i indica la frecuencia relativa.
- H_i corresponde a la frecuencia relativa acumulada.
- |F_i⁰ H_i|, el valor máximo en esta columna será el estadístico D.

En nuestro caso como estamos estudiando si la distribución de citación ha cambiado entre los años 2000 y 2015, para el cálculo de la probabilidad p_i, usaremos los datos correspondientes al año 2000, suponiendo que si no ha cambiado la distribución deberían ajustarse bien los datos del año 2015 usando dichas probabilidades.

Finalmente se compara el valor de D con el valor obtenido en las tablas para encontrar la región crítica y comprobar si los datos se encuentran dentro de ella o no, si $D > d_{n,\alpha}$ (teórico) entonces tenemos que rechazar la hipótesis nula.

4.- DESARROLLO.

4.1. Datos obtenidos.

Las categorías elegidas como muestra son las que se relacionan en la Tabla 5, es una muestra de tipo intencional, para la elección se ha seguido el criterio principal de incluir una pequeña representación de las ciencias, y dentro de cada rama de las ciencias la elección a seguido un criterio basado en el conocimiento de dicha categoría, por ejemplo Dentistry ha sido seleccionada por tener una relación laboral con investigadores que se dedican a este campo, Information Science & Library Science se ha seleccionado porque este trabajo se realiza dentro de los estudios conducentes a la obtención de un titulo dentro de esta área.

La elección de categorías en Ciencias Naturales se ha realizado buscando categorías en las que no existan un gran número de coautorías debido a la naturaleza de selección de los países que se usa, o sea, sólo el primer autor se toma en cuenta para

determina el nacionalidad del trabajo, también se ha elegido la categoría Water Resources por considerarla que puede indicar la adquisición de conciencia ecológica. Para las Ciencias de la Salud se han elegido categorías que sean generalistas, evitando aquellas que son excesivamente especializadas. Este último criterio se ha usado también en Ciencias Sociales y para finalizar se han seleccionado categorías encuadradas en Tecnología con la intención de conocer si los países emergentes se están especializando en las ramas más modernas, caso concreto podría presentarse con China, ya que es el mayor productor de tecnología y podría esperarse que también fuese el mayor productor de trabajos científicos en este ámbito.

Se puede comprobar que se han obtenido datos de 24 categorías agrupadas en 14 grupos como resultado de cada una de las consultas realizadas.

Consulta	Tipo	Categorías Englobadas
		Mathematics
WC=Mathematics* AND PY=20YY	Naturales	Mathematics, Applied
		Mathematics, Interdisciplinary Applications
WC=Optics* AND PY=20YY	Naturales	Optics
WC=Physics, Mathematical* AND PY=20YY	Naturales	Physics, Mathematical
WC=Water Resources* AND PY=20YY	Naturales	Water Resources
WC=Dentistry* AND PY=20YY	De la Salud	Dentistry, Oral Surgery & Medicine
WC=Health Care Sciences & Services * AND PY=20YY	De la Salud	Health Care Sciences & Services
WC=Nursing AND PY=20YY	De la Salud	Nursing
WC=Respiratory System AND PY=20YY	De la Salud	Respiratory System
WC=Business* AND PY=20YY	Sociales	Business
WC-business AIND P1-2011	Sociales	Business, Finance
WC=Information Science & Library Science * AND PY=20YY	Sociales	Information Science & Library Science
WC=Sociology* AND PY=20YY	Sociales	Sociology
WC=Women's Studies* AND PY=20YY	Sociales	Women's Studies
		Computer Science, Artificial Intelligence
		Computer Science, Cybernetics
		Computer Science, Hardware & Architecture
WC=Computer Science* AND PY=20YY	Tecnología	Computer Science, Information Systems
		Computer Science, Interdisciplinary Applications
		Computer Science, Software Engineering
		Computer Science, Theory & Methods
WC=Robotics* AND PY=20YY	Tecnología	Robotics
WC=Telecommunications* AND PY=20YY	Tecnología	Telecommunications

Tabla 5. Categorías seleccionadas.

Los datos se han obtenido como tablas con el país del artículo y su número de citas, a partir de dichos datos ordenados por el número de citas se han extraído los Top 1% y Top (10-1)%, correspondiendo estos al 1% de artículos más citados sobre el total de publicaciones para ese área y año, y de igual manera para el 10% de artículos más citados, excluyendo los datos correspondientes al 1% más citados.

Año	20	000	2000		2000		2000			
Tipo	Artí	culos		Paises		Artí	culos	Paises		
Intervalo	Top	Top 1%		Top 1%		Top (1	LO-1)%	1	Гор (1 <mark>0-1</mark>)%	6
	País	itas Articul	País	itas Totale	ım. Artícul	País	itas Articul	País	itas Totale	ım. Artícul
						South				
	India	1572	USA	32326	108	Africa	151	USA	48731	755
	USA	1314	France	4944	17	Iran	151	France	11927	187
	USA	1293	Germany	3923	15	USA	150	Germany	9426	144
								Peoples		
	Taiwan	1222	UK	2720	11	USA	150	R China	8326	133

Tabla 6. Ejemplo de datos de entrada.

Se puede observar que se hace una adquisición de datos por separado para cada uno de los Top que se estudian (aunque provienen del mismo fichero fuente descargado de Web of Science)

Sobre estos listados hemos realizado agrupaciones de las nacionalidades atribuidas a cada artículo y hemos acumulado tanto el número de artículos como el número de citas.

4.2. Resultados

4.2.1. Resultados contraste χ2 de Pearson sobre homogeneidad.

Los resultados obtenidos para el caso de Top 1% es el siguiente:

Contraste χ2 de Pear	son de hor	nogeneid	ad
	Top 1%		
CATEGORIA	χ2 exp	χ2 tablas	Acción
Matematics	134,99	18,307	Rechaza
Optics	28,23	9,4877	Rechaza
Physics, Mathematical	18,92	7,8147	Rechaza
Water Resources	8,48	5,9914	Rechaza
Dentistry	12,09	3,4814	Rechaza
Healt Care Sciences & Services	0,10	3,4814	ACEPTAR
Nursing	0,13	3,4814	ACEPTAR
Respiratory system	3,28	5,9914	ACEPTAR
Business	18,31	3,4814	Rechaza
Information Science & Library Science	3,78	3,4814	Rechaza
Sociology	2,19	3,4814	ACEPTAR
Women's studies	1,97	3,4814	ACEPTAR
Compute science	115,84	14,0671	Rechaza
Robotics	0,00	0	ACEPTAR
Telecommunications	38,26	5,9914	Rechaza

Tabla 7. Resultados χ2 de Pearson para Top 1%

Contraste χ2. de l	earson de homoge	neidad	
	Top (10-1)%		
CATEGORIA	χ2 exp	χ2 tablas	Acción
Matematics	721,86	61,6562	Rechaza
Optics	329,80	36,415	Rechaza
Physics, Mathematical	98,15	28,8693	Rechaza
Water Resources	112,02	28,8693	Rechaza
Dentistry	117,42	30,1435	Rechaza
Healt Care Sciences & Services	7,29	12,5916	ACEPTAR
Nursing	52,54	11,0705	Rechaza
Respiratory system	37,20	23,6848	Rechaza
Business	228,28	23,6848	Rechaza
Information Science & Library Science	48,83	16,919	Rechaza
Sociology	56,99	12,5916	Rechaza
Women's studies	6,96	7,8147	ACEPTAR
Compute science	1105,47	52,1923	Rechaza
Robotics	8,23	7,8147	Rechaza
Telecommunications	259,08	26,2962	Rechaza

Tabla 8. Resultados $\chi 2$ de Pearson para Top (10-1)%

4.2.2. Resultados contraste de Kolmogorov-Smirnov sobre bondad de ajuste.

Para el Top 1% obtenemos:

Contraste K-	S de bond	lad de aju	ste	
		Top 1%		
CATEGORIA	D	n	$\mathbf{d}_{\mathbf{n},\alpha}$	H ₀
Matematics	0,34612593	23731	0,00881539	Rechazar
Optics	0,15526504	23326	0,00889159	Rechazar
Physics, Mathematical	0,43502695	6164	0,01729691	Rechazar
Water Resources	0,15357084	8717	0,01454508	Rechazar
Dentistry	0,26718855	3953	0,02159914	Rechazar
Healt Care Sciences & Services	0,10688754	5546	0,01823517	Rechazar
Nursing	0,33066061	2277	0,02845891	Rechazar
Respiratory system	0,15174959	9684	0,01379979	Rechazar
Business	0,40907324	9345	0,01404786	Rechazar
Information Science & Library Science	0,32933442	2713	0,02607203	Rechazar
Sociology	0,21675393	3232	0,02388714	Rechazar
Women's studies	0,2915629	668	0,0525426	Rechazar
Compute science	0,35650801	58611	0,00560932	Rechazar
Robotics	0,14732499	1967	0,03061946	Rechazar
Telecommunications	0,40894184	17488	0,01026904	Rechazar

Tabla 9. Resultados contraste K-S para Top 1%.

Contraste K-	S de bond	lad de aju	ste	
	То	p (10-1))%	
CATEGORIA	D	n	$\mathbf{d}_{\mathbf{n},a}$	H ₀
Matematics	0,1769189	60817	0,00550665	Rechazar
Optics	0,16214653	57503	0,0056631	Rechazar
Physics, Mathematical	0,09328419	16822	0,01047034	Rechazar
Water Resources	0,18469491	30331	0,00779752	Rechazar
Dentistry	0,15536976	13641	0,01162724	Rechazar
Healt Care Sciences & Services	0,06084195	16761	0,01048938	Rechazar
Nursing	0,20151044	9676	0,01380549	Rechazar
Respiratory system	0,07287139	23999	0,00876603	Rechazar
Business	0,45744945	28163	0,00809208	Rechazar
Information Science & Library Science	0,27959268	8866	0,01442235	Rechazar
Sociology	0,27127023	8933	0,01436816	Rechazar
Women's studies	0,14721003	2185	0,02905187	Rechazar
Compute science	0,2599751	115607	0,003994	Rechazar
Robotics	0,14280863	4594	0,02003569	Rechazar
Telecommunications	0,34196716	38092	0,00695798	Rechazar

Tabla 10. Resultados contraste K-S para Top (10-1) %.

Aunque la hipótesis nula queda rechazada, a partir de los datos de este contraste K-S hemos obtenido los países que más afectan al cambio de distribución para cada una de las categorías estudiadas. Con estos resultados se puede intentar conocer quiénes son los nuevos actores que han aparecido en el mundo de la producción científica.

Los países están ordenados de mayor a menor intensidad de modificación, o sea, de mayor a menor diferencia entre el valor esperado y el valor observado.

		CONTRA	ASTE K-S			
Paises que más modifican la distribución						
		Top 1%			Top (10-1)%	
CATEGORIA	Pais 1	Pais 2	Pais 3	Pais 1	Pais 2	Pais 3
Matematics	South Korea	Snain	South Africa	U Arab Emirates	Turkmenistan	South Korea
Optics	Taiwan	•	Switzerland	Spain	U Arab Emirates	
Physics, Mathematical	South Korea			Sudan	Spain	Serbia
Water Resources	Spain	UK	Switzerland	Spain	Sri Lanka	Syria
Dentistry	UK	Turkey	Switzerland	Turkey	Thailand	Taiwan
Healt Care Sciences & Services	India	Morocco	New Zealand	South Korea	UK	Spain
Nursing	Spain	South Korea	Qatar	U Arab Emirates	Turkey	Thailand
Respiratory system	Switzerland	Taiwan	South Korea	Uganda	U Arab Emirates	Thailand
Business	UK	Taiwan	Switzerland	UK	U Arab Emirates	Turkey
Information Science & Library Science	UK	${\sf Switzerland}$	Spain	Taiwan	U Arab Emirates	Turkey
Sociology	UK	Switzerland	Sweden	UK	Turkey	Thailand
Women's studies	UK	Israel	Australia	Turkey	Switzerland	Sweden
Compute science	South Korea	Sweden	Spain	U Arab Emirates	Sri Lanka	Spain
Robotics	Singapore	Greece	Japan	South Africa	Singapore	Romania
Telecommunications	UK	Sweden	Sri Lanka	Ukraine	UK	U Arab Emirates

Tabla 11. Contraste K-S. Paises que más modifican la distribución.

Agrupando estos datos y haciendo un recuento sobre el número de categorías afectadas por cada uno de los países tenemos una lista de los países más han influido en la variación de la distribución ocurrida entre los años 2000 y 2015.

	Тор	1%		Top (10	0-1)%
Pais	Categorias	% Categorias afectadas	Pais	Categorias	% Categorias afectadas
			U Arab		
Switzerland	7	50%	Emirates	8	57%
UK	7	50%	Turkey	7	50%
Spain	6	43%	Spain	5	36%
South Korea	6	43%	UK	4	29%
Taiwan	3	21%	Thailand	4	29%
Sweden	3	21%	Taiwan	2	14%
South Africa	2	14%	South Korea	2	14%
Greece	1	7%	Sri Lanka	2	14%
India	1	7%	Syria	1	7%
Israel	1	7%	Serbia	1	7%
Japan	1	7%	Singapore	1	7%
Morocco	1	7%	South Africa	1	7%
New					
Zealand	1	7%	Sudan	1	7%
Australia	1	7%	Romania	1	7%
Singapore	1	7%	Switzerland	1	7%
Sri Lanka	1	7%	Ukraine	1	7%
			Turkmenist		
Turkey	1	7%	an	1	7%
Qatar	1	7%	Uganda	1	7%
			Sweden	1	7%

Tabla 12. Paises que más han influido en la distribución con número de categorías afectadas.

Para una mejor visualización de los datos correspondientes a los países que más han influido en la variación de la distribución según el contraste K-S de bondad de ajuste, podemos realizar un gráfico donde representamos a cada país en función del porcentaje de categorías (dentro de la muestra de categorías tomada) para las cuales muestra su capacidad de variación.

Para el grupo de datos correspondientes al Top 1%.

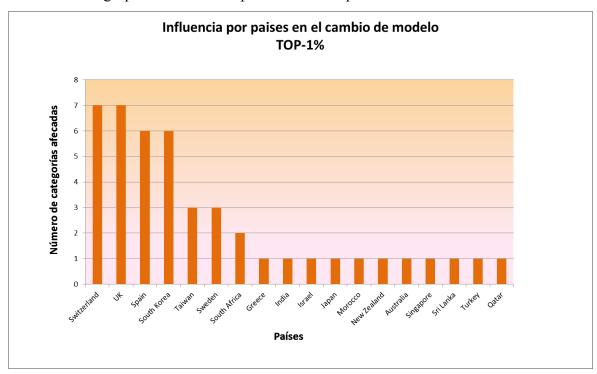


Gráfico 1. Influencia por paises en el cambio de modelo. Para el Top 1%

Y para el Top (10-1)%

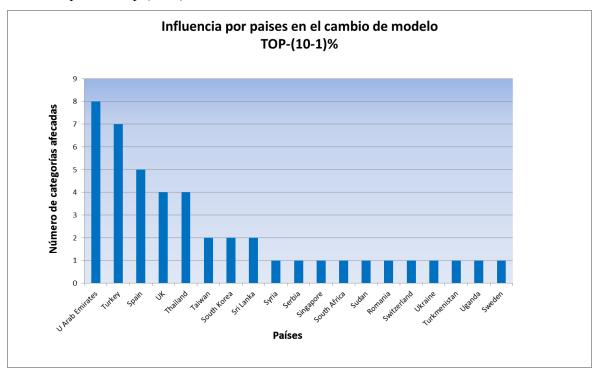


Gráfico 2. Influencia por paises en el cambio de modelo. Para el Top (10-1)%

Otra forma de visualizar los resultados puede obtenerse si agrupamos los países en regiones, lo cual nos ofrece el siguiente que aparece en la Tabla 15, en la cual se están sumando el número de categorías que se ven afectadas en el cambio de modelo por países pertenecientes a la región que se especifica.

Para el caso del Top 1% se representan los datos de la Tabla 13, en el Gráfico 3.

REGION	Categorías
AFRICA	3
ASIA	13
EUROPA	18
OCEANIA	2
ORIENTE MEDIO	3

Tabla 13. Influencia en la variación del modelo por regiones del mundo. Top 1%

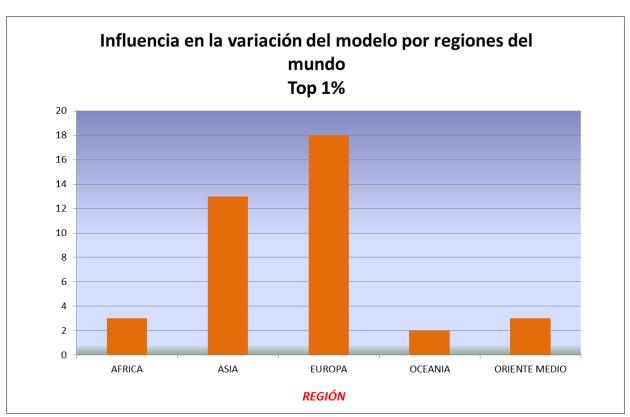


Gráfico 3. Influencia en la variación del modelo por regiones del mundo. Top 1%

Y en el Top (10-1)% representamos los datos de la Tabla 14 en el Gráfico 4.

REGION	Categorías
AFRICA	3
ASIA	11
EUROPA	14
ORIENTE MEDIO	7

Tabla 14. Influencia en la variación del modelo por regiones del mundo. Top (10-1)%

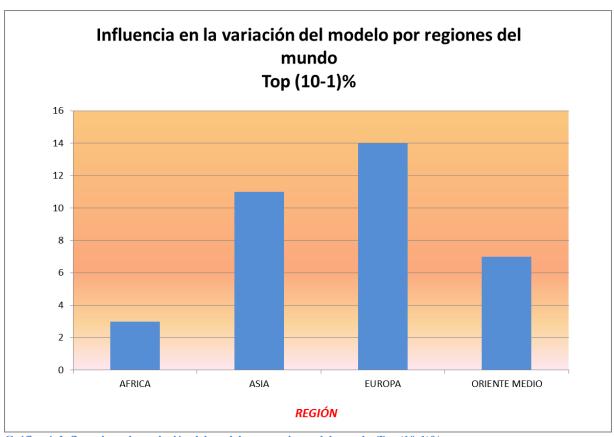


Gráfico 4. Influencia en la variación del modelo por regiones del mundo. Top (10-1)%

4.3.- Discusión de los resultados.

4.3.1.- Contraste χ2 de Pearson sobre homogeneidad.

Con este contraste se rechaza en una gran mayoría de los casos la hipótesis nula, lo cual indica que la distribución en esas categorías ha cambiado a lo largo de los 15 años de diferencia entre las dos muestras.

En los casos en que se acepta dentro del Top 1%, podríamos decir que se ha mantenido la distribución, matemáticamente la distribución no ha cambiado, ya que se mantiene que existe una país que monopoliza la mayoría de las publicaciones y la citas recibidas, por lo que para evitar el problema de este contraste, o sea, la aparición de frecuencias esperadas de valor menor o igual que 5 unidades, nos vemos obligados a hacer únicamente dos grupos, el país con un gran predominio y el resto de países, lo cual conlleva a que la distribución no cambie mientras no sea desbancado el país predominante en esa categoría.

Tab	la Frecuenc	ias observa	das		
SUMAS	35	107	142	Tab	la e _{ij}
Paises / Año	2000	2015	SUMA		
USA	22	64	86	21,20	64,80
Resto	13	43	56	13,80	42,20

Tabla 15. Categoria Healt Care & Services. Agrupación de clases para aplicar contraste χ2 de Pearson en Top

Dentro de estos casos de aceptación de la hipótesis nula es especial es el caso del área de Robotics, ya que tiene muy pocas publicaciones y además no existe ningún país que destaque ampliamente, y al realizar los cálculos en todos los casos de países se produce un valor de frecuencia esperada menor de 5, por lo que se queda en un solo grupo en el que se han englobado todos los países productores. Por tanto la distribución dentro del Top 1% se mantiene, ya que realmente no existe ninguna distribución.

Tab	la Frecuenc	ias observa	das		
SUMAS	8	30	38	Tab	la e _{ij}
Paises / Año	2000	2015	SUMA		
Resto	8	30	38	8,00	30,00

Tabla 16. Categoria Robotics. Agrupación de clases para aplicar contraste γ2 de Pearson en Top 1%.

Para el caso del Top (10-1)% se produce una gran similitud en los resultados, procediéndose a rechazar en casi todos los casos la hipótesis nula, por tanto, no se ha mantenido la distribución durante el periodo de tiempo estudiado.

En este Top (10-1)% se producen dos casos de aceptación de la hipótesis nula, y el razonamiento es idéntico al realizado para el caso del Top 1%, o sea, la existencia de un país predominante que eclipsa al resto, por lo que la distribución se mantiene mientras se mantenga ese predominio, y en los años estudiando este hecho no se ha producido.

En las dos categorías que se ha procedido a aceptar la hipótesis nula se ha producido una situación similar, en el Top 1% dichas categorías aceptaban la hipótesis nula al solo poder crearse dos grupos de frecuencias, una para el país predominante y otra para el resto. En el caso del Top (10-1)% se han podido crear algunos grupos más, pero es tan grande la diferencia con el país predominante la introducción de nuevos grupos no consigue modificar la distribución.

Tobl	la Fracuana	ias observa	das		
_		_		T-1-1	
SUMAS	68	245	313	Tabl	a e _{ij}
Paises / Año	2000	2015	SUMA		
USA	47	147	194	42,15	151,85
UK	10	22	32	6,95	25,05
Canada	4	20	24	5,21	18,79
Resto	7	56	63	13,69	49,31

Tabla 17. Categoria Women's Studies. Agrupación de clases para aplicar contraste χ^2 de Pearson en Top (10-1)%.

Tab	la Frecuenc	ias observa	das	
SUMAS	314	961	1275	Tab
Paises / Año	2000	2015	SUMA	
USA	174	492	666	164,02
UK	32	98	130	32,02
Canada	27	81	108	26,60
Australia	9	58	67	16,50
Netherlands	16	37	53	13,05
Germany	8	22	30	7,39
Resto	48	173	221	54,43

Tabla 18. Categoria Healt Care & Services. Agrupación de clases para aplicar contraste $\chi 2$ de Pearson en Top (10-1)%.

4.3.2.- Contraste de Kolmogorov-Smirnov sobre bondad de ajuste.

Los resultados de este contraste indican que en todos los casos debe rechazarse la hipótesis nula, o sea, la distribución de las citas recibidas por los artículos agrupados por países no se ha mantenido entre los años 2000 y 2015.

Una de las causas del cambio de distribución debe encontrarse en la aparición de nuevos países como productores de trabajos científicos, que además se han incorporado en los estratos altos, en relación a las citas recibidas por sus trabajos, de la masa de productores científicos.

Aprovechando que el contraste K-S se basa en medir la diferencia entre la frecuencia observada y la esperada podemos ver que países son los que mayor diferencia entre estas dos frecuencias muestran, asumiendo que esa mayor diferencia muestra una medida de la influencia del país en el cambio de distribución.

Como se puede apreciar en la Tabla 12 y en los Gráficos 1 y 2, no son los países asiáticos los que más influyen en el cambio de distribución, o sea, los países asiáticos ya llevan tiempo introducidos dentro del mundo de la producción científica, de acuerdo con estos resultados y en estas áreas, podemos considerar que se encuentran asentados, y en los inicios del s. XXI son otros países los que se están adentrando dentro de niveles altos de citación en la diversas categorías.

En el Top 1% es donde se aprecia más la aparición de países de Asía, como por ejemplo Corea del Sur y Taiwán, este hecho se puede deber a que para llegar al más alto nivel de citación, estos países necesitan tiempo, no es inmediato el ascenso dentro de dichos niveles de citación.

En el Top (10-1)% se aprecian también algunos países asiático, aunque destaca el hecho de la no aparición de China.

Un resultado que se puede destacar es el hecho de España, ya que aparece como fuente de variación del modelo en 6 categorías en el caso del Top 1%, y 5 categorías para el Top (10-1)%, lo cual indica que se está introduciendo en las capas altas de visibilidad de los trabajos publicados, se plantea como un gran mérito y esfuerzo realizado por los investigadores españoles para llegar a este nivel superior ya que también hay que tener en cuenta que en el periodo estudiado se ha sufrido una crisis económica que ha provocado grandes recortes a nivel presupuestario para el desarrollo en investigación científica.

Otro hecho destacable de esta relación de países es que no aparece ningún país Latinoamericano.

Estudiando los gráficos 3 y 4, se puede observar que la mayor influencia en el cambio de modelo de citación de los trabajos científicos se produce a través de las publicaciones de los países europeos en primer lugar y luego como segundo actor aparecen los países asiáticos.

Para las categorías estudiadas en el periodo de tiempo, se puede concluir, que los países con mayor tasa de variación en sus modelos de publicación y citación son los países europeos, mientras que los países asiáticos influyen en el cambio en menor medida ya que son nuevos países los que se están incorporando ya que la gran superpotencia que es China lleva más tiempo y su influencia en el campo se ha estancado o asimilado con el modelo.

5. CONCLUSIONES.

En primer lugar destacar que se ha producido un cambio en el modelo de desarrollo geográfico de los productores de trabajos científicos, lo que viene demostrado al no mantenerse homogeneidad en las muestras del año 2000 y del 2015, esto implica que hay nuevos actores que emergen y por tanto otros deben de bajar, no tanto en su producción, sino más importante en su visibilidad.

La hipótesis planteada queda rechazada, ya que si se produce un cambio en el modelo de citación hacia los trabajos científicos realizados en países considerados tradicionalmente como potencias en este campo. Siendo los países europeos y asiáticos los que actúan como motor de cambio de las tendencias.

La hipótesis que hemos descartado indica que los nuevos actores han cambiado la consideración de la elite científica, lo cual se puede interpretar de varias formas, tanto como que están produciendo trabajos de gran calidad y por tanto de gran visibilidad, y también como que se está produciendo un fenómeno de coautoría y colaboración científica que no ha tenido precedentes. Dentro de este aspecto se debe destacar el papel de España como productor científico, ya que sin ser uno de los mayores productores científicos, está introduciéndose dentro de los productores con mayor visibilidad.

En la actualidad la colaboración científica entre países no es algo raro, sino más bien una exigencia para poder afrontar en muchos casos los retos planteados, por tanto es normal que entre dicha colaboración aparezcan científicos de países menos ricos y que poco a poco van escalando en la situación científica global.

Hay que destacar que este estudio es muy pobre, ya que de inicio sólo tiene en cuenta unas pocas categorías, y aún más, solo tiene en cuenta el país del primer firmante del artículo, con lo cual hemos borrado por completo el concepto de coautoría y colaboración científica.

Una forma de avanzar en este campo sería tener en cuenta todas las variables, o sea, la coautoría y la colaboración entre países no sólo a nivel científico sino también a nivel económico, lo cual conllevar mejorar las producciones.

La principal limitación de este estudio es que se han utilizado sólo las primeras direcciones de los trabajos. Una asignación de las nacionalidades atendiendo a todos los autores, o sea, una asignación completa de todo a todos o bien una asignación fraccionada podría introducir cambios en los resultados obtenidos. Pero también se puede asumir que salvo excepciones el mayor crédito o mérito de un trabajo debe corresponder al primer autor. Solucionar esta limitación teniendo en cuenta al resto de autores de los trabajos podría ser el objeto de un nuevo estudio sobre el tema.

BIBLIOGRAFÍA

Arunachalam, S. (2004) «Science on the periphery enriches mainstream science, but at what cost?», *Handbook of Quantitative Science and Technology Research: The Use of* ..., (1), pp. 163-183. Disponible en: http://horizon.documentation.ird.fr/exl-doc/pleins textes/pleins textes 7/carton07/010008908.pdf.

Bornmann, L., Leydesdorff, L. y Mutz, R. (2013) «The use of percentiles and percentile rank classes in the analysis of bibliometric data: Opportunities and limits», *Journal of Informetrics*. Elsevier Ltd, 7(1), pp. 158-165. doi: 10.1016/j.joi.2012.10.001.

Galvez, A. et al. (2005) «Scientific Publication Trends and the Developing World»,

American scientist, 6(88), pp. 526-528.

Leydesdorff, L., Wagner, C. S. y Bornmann, L. (2014) «The European Union, China, and the United States in the top-1% and top-10% layers of most-frequently cited publications: Competition and collaborations», *Journal of Informetrics*. Elsevier Ltd, 8(3), pp. 606-617. doi: 10.1016/j.joi.2014.05.002.

Leydesdorff, L. y Zhou, P. (2005) «Are the contributions of China and Korea upsetting the world system of science?», *Scientometrics*, 63(3), pp. 617-630. doi: 10.1007/s11192-005-0231-1.

Marín Fernández, J (2008) Estadística Aplicada a las Ciencias de la Documentación. 3ª ed. Murcia:DM.

Scimago, G. (2007) «Análisis de la producción científica mundial por regiones», *El Profesional de la Informacion*, 16(2), pp. 158-159. doi: 10.3145/epi.2007.mar.11.

Scimago, G. (2008) «Asia vista con el SCImago Journal & Country Rank (SJR)», El *Profesional de la Informacion*, 17(6), pp. 677-678. doi: 10.3145/epi.2008.nov.12.

ANEXOS

ANEXO I. Tablas estadísticas.

Puntos críticos del test de Kolmogorov-Smirnov

Fuente: Marín Fernández, J (2008)

Tabla K: Puntos críticos del test de Kolmogorov-Smirnov

n	$\alpha = 0.10$	0.05	0.01		n	$\alpha = 0.10$	0.05	0.01
1	.95000	.97500	.99500	,	21	.25858	.28724	.34427
2	.77639	.84189	.92929		22	.25283	.28087	.33666
3	.63604	.70760	.82900		23	.24746	.27490	.32954
4	.56522	.62394	.73424		24	.24242	.26931	.32286
5	.50945	.56328	.66853		25	.23768	.26404	.31657
6	.46799	.51926	.61661		26	.23320	.25907	.31064
7	.43607	.48342	.57581		27	.22898	.25438	.30502
8	.40962	.45427	.54179		28	.22497	.24993	.29971
9	.38746	.43001	.51332		29	.22117	.24571	.29466
10	.36866	.40925	.48893		30	.21756	.24170	.28987
11	.35242	.39122	.46770		40	.18913	.21012	.25205
12	.33815	.37543	.44905		50	.16959	.18841	.22604
13	.32549	.36143	.43247		60	.15511	.17231	.20673
14	.31417	.34890	.41762		70	.14381	.15975	.19167
15	.30397	.33760	.40420		80	.13467	.14960	.17949
16	.29472	.32733	.39201		90	.12709	.14117	.16938
17	.28627	.31796	.38086		100	.12067	.13403	.16081
18	.27851	.30936	.37062		200	.08579	.09518	.11411
19	.27136	.30143	.36117		500	.05444	.06030	.07228
20	.26473	.29408	.35241		Asin.	1.224/√n	1.358/√n	1.628/√n

Nota: Para cada tamaño muestral n y para cada nivel de significación α , la tabla da el valor $d_{n,\alpha}$ tal que cuando el estadístico de Kolmogorov-Smirnov es $D \geq d_{n,\alpha}$ entonces se rechaza la hipótesis nula de ajuste de los datos a la distribución teórica dada.

Cuantiles de la distribución x2 de Pearson.

Fuente: Marín Fernández, J (2008)

Si $X \equiv \chi_n^2$ la tabla da los valores $\chi_{n,p}^2$ tales que $P\left(X \le \chi_{n,p}^2\right) = p$

Tabla G: Cuantiles de la distribución χ^2 de Pearson

п	- 0	77 10	0.4	'n	9	7	00	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	4 4	67	56	70	070	30	31	32	33	34	
p = .005	.04392704	0100251	206989	.411742	.675727	.989256	1.34441	1.73493	2.15586	2.60322	3.07382	3.56503	4.07467	4.60092	5.14221	5.69722	6.26480	6.84397	7.43384	8.03365	8.64272	9.26042	9.88623	1610.01	11.1602	17.4613	13 1211	13.7867	14.4578	15.1340	15.8153	16.5013	0 0
.010	.03157088	114832	297109	.554298	.872090	1.23904	1.64650	2.08790	2.55821	3.05348	3.57057	4.10692	4.66043	5.22935	5.81221	6.40776	7.01491	7.63273	8.26040	8.89720	9.54249	10.1957	10.8564	047011	12.1981	13 5647	14 2565	14.9535	15.6555	_	_		. 1
.025	.03982069	715795	484419	.831212	1.23734	1.68987	2.17973	2.70039	3.24697	3.81575	4.40379	5.00875	5.62873	6.26214	99206.9	7.56419	8.23075	8.90652	9.59078	10.2829	10.9823	11.6885	12.4011	13.1197	13.8439	15 3070	16 0471	16.7908	17.5387	18.2908	19.0467	19.8063	
.050	.02393214	351846	710723	1.14547	1.63538	2.16735	2.73264	3.32511	3.94030	4.57481	5.22603	5.89186	6.57063	7.26094	7.96165	8.67176	9.39046	10.1170	10.8508	11.5913	12.3380	13.0905	13.8484	14.0114	15.3792	16 9779	17 7084	18.4927	19.2806	20.0719	20.8665	21.6643	010.00
.100	8067510.	584375	1.06362	1.61031	2.20413	2.83311	3.48954	4.16816	4.86518	5.57778	6.30380	7.04150	7.78953	8.54676	9.31224	10.0852	10.8649	11.6509	12.4426	13.2396	14.0415	14.8480	15.6587	+0.4.01	17.2919	18 9392	19.7677	20.5992	21.4336	22.2706	23.1102	23.9523	1701
.250	.1015310	1 21253	1.92256	2.67460	3.45460	4.25485	5.07064	5.89883	6.73720	7.58414	8.43842	9.29907	10.1653	11.0365	11.9122	12.7919	13.6753	14.5620	15.4518	16.3444	17.2396	18.1373	19.0372	000000	20.8434	22 6572	23.5666	24.4776	25.3901	26.3041	27.2194	28.1361	07.00
.500	.454936	2.36597	3.35669	4.35146	5.34812	6.34581	7.34412	8.34283	9.34182	10.3410	11.3403	12.3398	13.3393	14.3389	15.3385	16.3382	17.3379	18.3376	19.3374	20.3372	21.3370	22.3369	23.3367	00000.72	25.5365	27 3362	28.3361	29.3360	30.3359	31.3359	32.3358	33.3357	120000
.750	1.32330	4.10834	5.38527	6.62568	7.84080	9.03715	10.2189	11.3888	12.5489	13.7007	14.8454	15.9839	17.1169	18.2451	19.3689	20.4887	21.6049	22.7178	23.8211	24.9348	26.0393	27.1413	28.2412	1000.00	30.4346	32.6205	33.7109	34.7997	35.8871	36.9730	38.0575	39.1408	00000
006.	2.70554	6.25139	7.77944	9.23636	10.6446	12.0170	13.3616	14.6837	15.9872	17.2750	18.5494	19.8119	21.0641	22.3071	23.5418	24.7690	25.9894	27.2036	28.4120	29.6151	30.8133	32.0069	33.1962	0100.10	35.3032	37 9159	39.0875	40.2560	41.4217	42.5847	43.7452	44.9032	00500
.950	3.84146	7.81473	9.48773	11.0705	12.5916	14.0671	15.5073	16.9190	18.3070	19.6751	21.0261	22.3620	23.6848	24.9958	26.2962	27.5871	28.8693	30.1435	31.4104	32.6706	33.9244	35.1725	30.4150	200000	38.8851	41 3371	42.5570	43.7730	44.9853	46.1943	47.3999	48.6024	40 0010
.975	5.02389	9.34840	11.1433	12.8325	14.4494	16.0128	17.5345	19.0228	20.4832	21.9200	23.3367	24.7356	26.1190	27.4884	28.8454	30.1910	31.5264	32.8523	34.1090	35.4789	36.7807	38.0756	39.3041	20000	41.9232	44 4608	45.7223	46.9792	48.2319	49.4804	50.7251	51.9660	50000
066.	6.63490	11.3449	13.2767	15.0863	16.8119	18.4753	20.0902	21.6660	23.2093	24.7250	26.2170	27.6883	29.1412	30.5779	31.9999	33.4087	34.8053	36.1909	37:3002	38.9322	40.2894	41.6384	42.9798	1110.11	45.0417	48.2782	49.5879	50.8922	52.1914	53.4858	54.7755	56.0609	57 2421
.99	7.87944	12.8382	14.8603	16.7496	18.5476	20.2777	21.9550	23.5894	25.1882	26.7569	28.2995	29.8195	31.3193	32.8013	34.2672	35.7185	37.1564	38.5823	39.9908	41.4011	42.7956	44.1813	45.5585	70000	48.2899	50.9934	52.335	53.6720	55.0027	56.328	57.6484	58.9639	012007

Nota: Cuando n > 50 se puede usar la aproximación χ_n^2 , $p \simeq n \left(1 - \frac{2}{9n} + Z_p \sqrt{\frac{2}{9n}}\right)^2$

Cuantiles de la distribución χ^2 de Pearson (continuación)

Si $X \equiv \chi_n^2$ la tabla da los valores $\chi_{n,\,p}^2$ tales que $P\left(X \le \chi_{n,\,p}^2\right) = p$

995	61.5812	62.8833	64.1814	65.4756	9992.99	68.0527	69.3360	70.6159	71.8926	73.1661	74.4365	75.7041	76.9688	78.2307	79.4900	91.9517	104.215	116.321	128.299	140.169	2.575829
066	58.6192	59.8925	61.1621	62.4281	63.6907	64.9501	66.2062	67.4593	68.7095	8956.69	71.2014	72.4433	73.6826	74.9195	76.1539	88.3794	100.425	112.329	124.116	135.807	2.326348
.975	54.4373	55.6680	56.8955	58.1201	59.3417	909509	61.7768	62.9904	64.2015	65.4102	66.6165	67.8206	69.0226	70.2224	71.4202	83.2977	95.0232	106.629	118.136	129.561	1.959964
.950	50.9985	52.1923	53.3835	54.5722	55.7585	56.9424	58.1240	59.3035	60.4809	61.6562	62.8296	64.0011	65.1708	66.3386	67.5048	79.0819	90.5312	101.879	113.145	124.342	1.644854
006.	47.2122	48.3634	49.5126	50.6598	51.8051	52.9485	54.0902	55.2302	56.3685	57.5053	58.6405	59.7743	9906.09	62.0375	63.1671	74.3970	85.5270	96.5782	107.565	118.498	1.281552
.750	41.3036	42.3833	43.4619	44.5395	45.6160	46.6916	47.7663	48.8400	49.9129	50.9849	52.0562	53.1267	54.1964	55.2653	56.3336	66.9815	77.5767	88.1303	98.6499	109.141	0.674490
.500	35.3356	36.3355	37.3355	38.3354	39.3353	40.3353	41.3352	42.3352	43.3352	44.3351	45.3351	46.3350	47.3350	48.3350	49.3349	59.3347	69.3345	79.3343	89.3342	99.3341	0.000000
.250	29.9730	30.8933	31.8146	32.7369	33.6603	34.5846	35.5099	36.4361	37.3631	38.2910	39.2197	40.1492	41.0794	42.0104	42.9421	52.2938	61.6983	71.1445	80.6247	90.1332	-0.674490
.100	25.6433	26.4921	27.3430	28.1958	29.0505	29.9071	30.7654	31.6255	32.4871	33.3504	34.2152	35.0814	35.9491	36.8182	37.6886	46.4589	55.3289	64.2778	73.2911	82.3581	-1.281552
.050	23.2686	24.0749	24.8839	25.6954	26.5093	27.3256	28.1440	28.9647	29.7875	30.6123	31.4390	32.2676	33.0981	33.9303	34.7643	43.1880	51.7393	60.3915	69.1260	77.9295	-1.644854
.025	21.3359	22.1056	22.8785	23.6543	24.4330	25.2145	25.9987	26.7854	27.5746	28.3662	29.1601	29.9562	30.7545	31.5549	32.3574	40.4817	48.7576	57.1532	65.6466	74.2219	-1.959964
.010	19.2327	19.9602	20.6914	21.4262	22.1643	22.9056	23.6501	24.3976	25.1480	25.9013	26.6572	27.4158	28.1770	28.9406	29.7067	37.4849	45.4417	53.5401	61.7541	70.0649	-2.326348
p = .005	17.8867	18.5858	19.2889	19.9959	20.7065	21.4208	22.1385	22.8595	23.5837	24.3110	25.0413	25.7746	26.5106	27.2493	27.9907	35.5345	43.2752	51.1719	59.1963	67.3276	-2.575829
п	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	09	70	80	06	100	Zp

Nota: Cuando n>50 se puede usar la aproximación $\chi^2_{n,\,p}\simeq n\left(1-\frac{2}{9n}+Z_p\sqrt{\frac{2}{9n}}\right)^3$.

ANEXO II. Contrastes $\chi 2$ de Pearson sobre homogeneidad para cada categoría.

				MATHEI	MATICS						
			Cor	traste v2 d	e Pearson de	homogen	eidad				
			٠	THE ACTION AND THE	TOP 1%	· iioiiiogeii					
Tabla	Frecuencia	s observac	las								
SUMAS	244	609	853		Tabl	a e _{ii}		Tabla (f _{ii}	- e _{ii})²/e _{ii}	χ2 _{exp} =	134,99
Paises / Año	2000	2015	SUMA				Sumas	96,38	38,61		
USA	108	97	205		58,64	146,36		41,55	16,65	Num. Clases =	11
Peoples R Cr	7	179	186		53,21	132,79		40,13	16,08		
Germany	15	32	47		13,44	33,56		0,18	0,07		
France	17	19	36		10,30	25,70		4,36	1,75		
Italy	9	25	34		9,73	24,27		0,05	0,02		
UK	11	20	31		8,87	22,13		0,51	0,21		
Spain	10	14	24		6,87	17,13		1,43	0,57		
Australia	3	19	22		6,29	15,71		1,72	0,69		
Canada	9	11	20		5,72	14,28		1,88	0,75		
India	2	17	19		5,43	13,57		2,17	0,87		
Resto	53	176	229		65,51	163,49		2,39	0,96		

		M	ATHEMATI	CS					
			Contraste)	(2 de Pearson de TOP (10-1)%%		eidad			
Tabla F	recuencias	observadas		101 (10-1)/8/					
SUMAS	2237	5624	7861	Tabla	e _{ii}		Tabla (f _{ij}	- e _{ii})² / e _{ii}	χ2 _{exp} =
Paises / Año	2000	2015 SUI	MA		9	Sumas	516,44	205,42	74 CAP
USA	755	995	1750	498,00	1252,00		132,63		Num. Clases =
Peoples R Ch	133	1151	1284	365,39	918,61		147,80	58,79	
France	187	291	478	136,02	341,98		19,10	7,60	
Germany	144	297	441	125,50	315,50		2,73	1,09	
Italy	89	292	381	108,42	272,58		3,48	1,38	
UK	115	211	326	92,77	233,23		5,33	2,12	
Spain	71	155	226	64,31	161,69		0,70	0,28	
Canada	80	117	197	56,06	140,94		10,22	4,07	
Japan	64	115	179	50,94	128,06		3,35	1,33	
Australia	65	108	173	49,23	123,77		5,05	2,01	
India	27	134	161	45,82	115,18		7,73	3,07	
Russia	31	126	157	44,68	112,32		4,19	1,67	
Iran	3	152	155	44,11	110,89		38,31	15,24	
Poland	23	104	127	36,14	90,86		4,78	1,90	
South Korea	24	95	119	33,86	85,14		2,87	1,14	
Netherlands	41	51	92	26,18	65,82		8,39	3,34	
Switzerland	18	71	89	25,33	63,67		2,12	0,84	
Belgium	28	57	85	24,19	60,81		0,60	0,24	
Israel	39	46	85	24,19	60,81		9,07	3,61	
Taiwan	40	45	85	24,19	60,81		10,34	4,11	
Brazil	22	61	83	23,62	59,38		0,11	0,04	
Saudi Arabia	0	78	78	22,20	55,80		22,20	8,83	
Turkey	8	70	78	22,20	55,80		9,08	3,61	
Austria	12	57	69	19,64	49,36		2,97	1,18	
Sweden	25	32	57	16,22	40,78		4,75	1,89	
Romania	11	45	56	15,94	40,06		1,53	0,61	
Singapore	20	27	47	13,37	33,63		3,28	1,31	
Czech Repub	13	33	46	13.09	32,91		0.00	0.00	
Norway	11	35	46	13,09	32,91		0,33	0,13	
Pakistan	0	46	46	13,09	32,91		13,09	5,21	
Portugal	11	32	43	12,24	30,76		0,12	0,05	
Hungary	10	29	39	11,10	27,90		0,12	0,03	
Mexico	6	29	35	9,96	25,04		1,57	0,63	
South Africa	7	28	35	9,96	25,04		0,88	0,35	
Chile	6	28	34	9,68	24,32		1,40	0,55	
Denmark	10	23	33	9,39	23,61		0,04	0,02	
Finland	16	17	33	9.39	23,61		4,65	1,85	
Egypt	4	26	30	8,54	21,46		2,41	0,96	
Vietnam	2	27	29	8,25	20,75		4,74	1,88	
Greece	11	17	28	7,97	20,73		1,15	0,46	
Serbia	0	27	27	7,68	19,32		7,68	3,06	
New Zealand	8	14	22	6,26	15,74		0,48	0,19	
Slovenia	0	20	20	5,69	14,31		5,69	2,26	
Argentina	3	16	19	5,41	13,59		1,07	0,43	
Resto	44	194	238	67,73	170,27		8,31	3,31	

				OPTICS						
			Cor	ntraste χ2 de Pearson d	le homogen	eidad				
				TOP 1%		_			_	
Tabla I	Frecuencia	s observa	das							
SUMAS	115	282	397	Tab	la e _{ij}		Tabla (f _{ij}	- e _{ij})²/e _{ij}	χ2 _{exp} =	28,23
Paises / Año	2000	2015	SUMA			Sumas	20,05	8,18		
USA	48	78	126	36,50	89,50		3,62	1,48	Num. Clases =	5
Peoples R Ch	2	63	65	18,83	46,17		15,04	6,13		
Germany	11	16	27	7,82	19,18		1,29	0,53		
UK	8	18	26	7,53	18,47		0,03	0,01		
Resto	46	107	153	44,32	108,68		0,06	0,03		

			OP1	TICS							
			Conf	traste y2 de	Pearson de	homogene	idad				
					OP (10-1)%%						
Tabla	Frecuencias	observa	das								
SUMAS	1046	2735	3781		Tabla	a e _{ij}		Tabla (f _{ij}	- e _{ij})² _/ e _{ij}	χ2 _{exp} =	329,80
Paises / Año	2000	2015	SUMA				Sumas	238,56	91,24		
USA	319	540	859		237,64	621,36		27,86	10,65	um. Clases =	25
Peoples R Ch	43	637	680		188,12	491,88		111,95	42,81		
Germany	86	190	276		76,35	199,65		1,22	0,47		
UK	85	124	209		57,82	151,18		12,78	4,89		
Japan	88	101	189		52,29	136,71		24,39	9,33		
France	69	108	177		48,97	128,03		8,20	3,13		
Italy	40	91	131		36,24	94,76		0,39	0,15		
Spain	28	88	116		32,09	83,91		0,52	0,20		
India	11	93	104		28,77	75,23		10,98	4,20		
Canada	21	76	97		26,83	70,17		1,27	0,49		
Australia	31	59	90		24,90	65,10		1,50	0,57		
South Korea	10	75	85		23,51	61,49		7,77	2,97		
Russia	18	65	83		22,96	60,04		1,07	0,41		
Singapore	8	49	57		15,77	41,23		3,83	1,46		
Switzerland	20	37	57		15,77	41,23		1,14	0,43		
Poland	12	40	52		14,39	37,61		0,40	0,15		
Denmark	18	30	48		13,28	34,72		1,68	0,64		
Netherlands	21	22	43		11,90	31,10		6,97	2,66		
Taiwan	9	29	38		10,51	27,49		0,22	0,08		
Israel	13	24	37		10,24	26,76		0,75	0,29		
Austria	14	18	32		8,85	23,15		2,99	1,14		
Belgium	5	25	30		8,30	21,70		1,31	0,50		
Iran	1	26	27		7,47	19,53		5,60	2,14		
Sweden	12	13	25		6,92	18,08		3,74	1,43		
Resto	64	175	239		66,12	172,88		0,07	0,03		

				PHY	SICS						
			Cor	itraste χ2 d	eidad						
					TOP 1%						
Tab	la Frecuenc	ias observa	das								
SUMAS	59	108	167		Tabl	a e _{ij}		Tabla (f _{ij}	- e _{ij})²/e _{ij}	χ2 _{exp} =	18,92
Paises / Año	2000	2015	SUMA				Sumas	12,24	6,68		
USA	24	18	42		14,84	27,16		5,66	3,09	Num. Clases =	4
Peoples R Ch	0	18	18		6,36	11,64		6,36	3,47		
Germany	5	11	16		5,65	10,35		0,08	0,04		
Resto	30	61	91		32,15	58,85		0,14	0,08		

			PHY:	SICS							
				itraste x2 de Pearson	de l	nomogene	eidad				
				TOP (10-1							
Tabla I	Frecuencias	observad	as								
SUMAS	533	1046	1579	T	bla e	⊋ _{ij}		Tabla (f _{ij}	- e _{ij})²/e _{ij}	χ2 _{exp} =	98,15
Paises / Año	2000	2015	SUMA				Sumas	65,02	33,13		
USA	164	233	397	134,)1	262,99		6,71	3,42	Num. Clases =	19
Peoples R Ch	24	164	188	63,	16	124,54		24,54	12,50		
Germany	65	72	137	46,	25	90,75		7,61	3,88		
France	48	63	111	37,	17	73,53		2,96	1,51		
UK	31	62	93	31,	39	61,61		0,00	0,00		
Italy	26	59	85	28,	59	56,31		0,25	0,13		
Russia	17	44	61	20,	59	40,41		0,63	0,32		
Japan	26	33	59	19,	92	39,08		1,86	0,95		
India	7	35	42	14,	18	27,82		3,63	1,85		
Canada	16	24	40	13,	50	26,50		0,46	0,24		
Australia	10	20	30	10,	L3	19,87		0,00	0,00		
Switzerland	11	17	28	9,4	15	18,55		0,25	0,13		
Netherlands	14	9	23	7,	76	15,24		5,01	2,55		
Spain	6	17	23	7,	76	15,24		0,40	0,20		
Sweden	8	13	21	7,0)9	13,91		0,12	0,06		
South Korea	8	12	20	6,	75	13,25		0,23	0,12		
Israel	9	10	19	6,4	11	12,59		1,04	0,53		
Poland	4	14	18	6,0	08	11,92		0,71	0,36		
Resto	39	145	184	62,	l1	121,89		8,60	4,38		

			W	ATER RE	SOURC	ES					
			Cor	traste χ2 de	Pearson d	e homogen	eidad				
				_	TOP 1%						
Tab	la Frecuenc	ias observa	das								
SUMAS	47	162	209		Tab	la e _{ij}		Tabla (f _{ij}	- e _{ij})² / e _{ij}	χ2 _{exp} =	8,48
Paises / Año	2000	2015	SUMA				Sumas	6,57	1,91		
USA	18	40	58		13,04	44,96		1,88	0,55	Num. Clases =	3
Peoples R Ch	1	28	29		6,52	22,48		4,67	1,36		
Resto	28	94	122		27,44	94,56		0,01	0,00		

		W	ATER RE	SOURCES						
			Conf	traste χ2 de Pearson de	e homogen	eidad				
				TOP (10-1)%	%					
Tabla I	Frecuencias	observad	as							
SUMAS	420	1586	2006	Tabl	a e _{ij}		Tabla (f _{ij}	- e _{ij})² _/ e _{ij}	χ2 _{exp} =	112,02
Paises / Año	2000	2015	SUMA			Sumas	88,56	23,45		
USA	145	326	471	98,61	372,39		21,82	5,78	Num. Clases =	19
Peoples R Ch	14	227	241	50,46	190,54		26,34	6,98		
Australia	19	95	114	23,87	90,13		0,99	0,26		
UK	40	72	112	23,45	88,55		11,68	3,09		
Canada	23	67	90	18,84	71,16		0,92	0,24		
Germany	14	74	88	18,42	69,58		1,06	0,28		
Italy	14	66	80	16,75	63,25		0,45	0,12		
Spain	11	57	68	14,24	53,76		0,74	0,19		
India	7	53	60	12,56	47,44		2,46	0,65		
France	19	38	57	11,93	45,07		4,18	1,11		
Netherlands	15	40	55	11,52	43,48		1,05	0,28		
Iran	1	50	51	10,68	40,32		8,77	2,32		
Switzerland	8	31	39	8,17	30,83		0,00	0,00		
South Korea	6	27	33	6,91	26,09		0,12	0,03		
Japan	9	18	27	5,65	21,35		1,98	0,52		
Greece	3	22	25	5,23	19,77		0,95	0,25		
Malaysia	1	23	24	5,02	18,98		3,22	0,85		
Sweden	7	17	24	5,02	18,98		0,78	0,21		
Resto	64	283	347	72,65	274,35		1,03	0,27		

				DENTISTRY						
			Con	itraste χ2 de Pearson o	de homogen	eidad				
				TOP 1%		_				
Tabla I	Frecuencia	as observa	das							
SUMAS	42	108	150	Tak	ola e _{ij}		Tabla (f _{ij}	- e _{ij})² _/ e _{ij}	χ2 _{exp} =	12,09
Paises / Año	2000	2015	SUMA			Sumas	8,70	3,38		
USA	20	21	41	11,48	29,52		6,32	2,46	Num. Clases =	2
Resto	22	87	109	30,52	78,48		2,38	0,92		

			DENTIS	STRY						
			Cont	raste χ2 de Pearson de		eidad				
				TOP (10-1)%	%				1	
	Frecuencias							. 2		
SUMAS	368	993	1361	Tabla	9		Tabla (f _{ij}		χ2 _{exp} =	117,42
Paises / Año	2000	2015	SUMA			Sumas	85,67	31,75		
USA	120	202	322	87,07	234,93		12,46	4,62	Num. Clases =	20
Germany	28	72	100	27,04	72,96		0,03	0,01		
UK	36	54	90	24,34	65,66		5,59	2,07		
Brazil	7	76	83	22,44	60,56		10,63	3,94		
Peoples R Ch	5	74	79	21,36	57,64		12,53	4,64		
Italy	11	60	71	19,20	51,80		3,50	1,30		
Japan	24	35	59	15,95	43,05		4,06	1,50		
Sweden	18	35	53	14,33	38,67		0,94	0,35		
Switzerland	7	45	52	14,06	37,94		3,55	1,31		
Turkey	5	47	52	14,06	37,94		5,84	2,16		
Netherlands	11	31	42	11,36	30,64		0,01	0,00		
South Korea	4	37	41	11,09	29,91		4,53	1,68		
Spain	3	36	39	10,55	28,45		5,40	2,00		
Finland	13	12	25	6,76	18,24		5,76	2,13		
Denmark	10	14	24	6,49	17,51		1,90	0,70		
Canada	7	16	23	6,22	16,78		0,10	0,04		
Belgium	6	16	22	5,95	16,05		0,00	0,00		
France	10	11	21	5,68	15,32		3,29	1,22		
Taiwan	0	19	19	5,14	13,86		5,14	1,90		
Resto	43	101	144	38,94	105,06		0,42	0,16		

		HE	ALTH CA	RE SCIEN	ICES ANI	D SERVI	CES				
			Cor	itraste χ2 d	e Pearson d	e homogen	eidad				
					TOP 1%		_				
Tab	la Frecuenc	ias observa	das								
SUMAS	35	107	142		Tabl	la e _{ij}		Tabla (f _{ij}	- e _{ij})² / e _{ij}	χ2 _{exp} =	0,10
Paises / Año	2000	2015	SUMA				Sumas	0,08	0,03		
USA	22	64	86		21,20	64,80		0,03	0,01	Num. Clases =	2
Resto	13	43	56		13,80	42,20		0,05	0,02		

	HF4	NTH CA	RF SCIFN	ICES AND SERVI	CES					
	7127			ntraste γ2 de Pearson o		eidad				
				TOP (10-1)9	•					
Tab	la Frecuenci	ias observa	das							
SUMAS	314	961	1275	Tab	la e _{ij}		Tabla (f _{ij}	- e _{ij})² _/ e _{ij}	χ2 _{exp} =	7,29
Paises / Año	2000	2015	SUMA			Sumas	5,50	1,80		
USA	174	492	666	164,02	501,98		0,61	0,20	Num. Clases =	7
UK	32	98	130	32,02	97,98		0,00	0,00		
Canada	27	81	108	26,60	81,40		0,01	0,00		
Australia	9	58	67	16,50	50,50		3,41	1,11		
Netherlands	16	37	53	13,05	39,95		0,67	0,22		
Germany	8	22	30	7,39	22,61		0,05	0,02		
Resto	48	173	221	54,43	166,57		0,76	0,25		

				NUR:	SING						
			Cor	traste χ2 d	e Pearson de TOP 1%	e homogen	eidad				
Tabl	la Frecuenci	ias observa	das								
SUMAS	19	91	110		Tabl	a e _{ij}		Tabla (f _{ij}	- e _{ij})²/e _{ij}	χ2 _{exp} =	0,13
Paises / Año	2000	2015	SUMA				Sumas	0,11	0,02		
USA	9	39	48		8,29	39,71		0,06	0,01	Num. Clases =	2
Resto	10	52	62		10,71	51,29		0,05	0,01		

			NURS	ING						
			Cont	traste χ2 de Pearson d	•	eidad				
				TOP (10-1)%	<u>%</u>	1			1	
	Frecuencias							. 7		
SUMAS	171	1025	1196	Tabl	a e _{ij}		Tabla (f _{ij}	- e _{ij})²/e _{ij}	χ2 _{exp} =	52,54
Paises / Año	2000	2015	SUMA			Sumas	45,03	7,51		
USA	77	400	477	68,20	408,80		1,14	0,19	Num. Clases =	6
Australia	16	144	160	22,88	137,12		2,07	0,34		
UK	37	80	117	16,73	100,27		24,57	4,10		
Canada	14	61	75	10,72	64,28		1,00	0,17		
Sweden	8	37	45	6,43	38,57		0,38	0,06		
Resto	19	303	322	46,04	275,96		15,88	2,65		

			RES	PIRATO	RY SYST	EM					
			Cor	traste χ2 d	e Pearson d	e homogen	eidad				
					TOP 1%		-				
Tabla	Frecuencia	s observa	das								
SUMAS	59	98	157		Tab	la e _{ij}		Tabla (f _{ij}	- e _{ij})² _/ e _{ij}	χ2 _{exp} =	3,28
Paises / Año	2000	2015	SUMA				Sumas	2,05	1,23		
USA	23	40	63		23,68	39,32		0,02	0,01	Num. Clases =	3
UK	12	10	22		8,27	13,73		1,69	1,01		
Resto	24	48	72		27,06	44,94		0,35	0,21		

		RES	PIRATO	RY SYSTEM						
			Cont	raste χ2 de Pearson de	homogene	idad				
				TOP (10-1)%%	6					
Tabla	a Frecuencias	observad	as							
SUMAS	516	871	1387	Tabl	a e _{ij}		Tabla (f _{ij}	- e _{ij})²/e _{ij}	χ2 _{exp} =	37,20
Paises / Año	2000	2015	SUMA			Sumas	23,36	13,84		
USA	205	329	534	198,66	335,34		0,20	0,12	um. Clases =	15
UK	76	85	161	59,90	101,10		4,33	2,57		
Canada	40	49	89	33,11	55,89		1,43	0,85		
Germany	18	54	72	26,79	45,21		2,88	1,71		
France	29	37	66	24,55	41,45		0,81	0,48		
Japan	26	40	66	24,55	41,45		0,09	0,05		
Netherlands	14	37	51	18,97	32,03		1,30	0,77		
Italy	23	25	48	17,86	30,14		1,48	0,88		
Peoples R Ch	6	38	44	16,37	27,63		6,57	3,89		
Australia	11	30	41	15,25	25,75		1,19	0,70		
Spain	10	26	36	13,39	22,61		0,86	0,51		
Switzerland	9	11	20	7,44	12,56		0,33	0,19		
Belgium	6	12	18	6,70	11,30		0,07	0,04		
Sweden	6	11	17	6,32	10,68		0,02	0,01		
Resto	37	87	124	46,13	77,87		1,81	1,07		

								I			
				BUSI	NESS						
			Cor	eidad							
					TOP 1%						
Tab	la Frecuenc	ias observa	das								
SUMAS	33	188	221		Tab	la e _{ij}		Tabla (f _{ij}	- e _{ij})²/e _{ij}	χ2 _{exp} =	18,31
Paises / Año	2000	2015	SUMA				Sumas	15,57	2,73		
USA	27	78	105		15,68	89,32		8,17	1,43	Num. Clases =	2
Resto	6	110	116		17,32	98,68		7,40	1,30		

			BUSII	VESS						
			Con	traste χ2 de Pearson d	•	eidad				
				TOP (10-1)%	<u>%</u>					
	Frecuencias									
SUMAS	291	1849	2140	Tabl	a e _{ij}		Tabla (f _{ij}	- e _{ij})²/e _{ij}	χ2 _{exp} =	228,28
Paises / Año	2000	2015	SUMA			Sumas	197,24	31,04		
USA	223	577	800	108,79	691,21		119,92	18,87	Num. Clases =	15
UK	17	196	213	28,96	184,04		4,94	0,78		
Germany	3	107	110	14,96	95,04		9,56	1,50		
Australia	4	102	106	14,41	91,59		7,52	1,18		
Peoples R Ch	7	88	95	12,92	82,08		2,71	0,43		
Canada	6	73	79	10,74	68,26		2,09	0,33		
Spain	1	77	78	10,61	67,39		8,70	1,37		
Netherlands	3	65	68	9,25	58,75		4,22	0,66		
France	4	52	56	7,61	48,39		1,72	0,27		
Italy	2	54	56	7,61	48,39		4,14	0,65		
South Korea	4	42	46	6,26	39,74		0,81	0,13		
Taiwan	0	43	43	5,85	37,15		5,85	0,92		
Finland	2	38	40	5,44	34,56		2,17	0,34		
Switzerland	0	37	37	5,03	31,97		5,03	0,79		
Resto	15	298	313	42,56	270,44		17,85	2,81		

		INFORM	MATION	SCIENCE	AND LIE	BRARYS	CIENCE				
			Cor	itraste x2 d	e Pearson d	e homogen	eidad				
Tabla	Frecuenci	ias observa	das								
SUMAS	20	57	77		Tabl	la e _{ij}		Tabla (f _{ij}	- e _{ij})² _/ e _{ij}	χ2 _{exp} =	3,78
Paises / Año	2000	2015	SUMA				Sumas	2,80	0,98		
USA	12	20	32		8,31	23,69		1,64	0,57	Num. Clases =	2
Resto	8	37	45		11,69	33,31		1,16	0,41		

1	NFORM	ATION	SCIENCE	AND LIBRARY S	CIENCE					
-			Cor	ntraste x2 de Pearson d	e homogen	hehie				
				TOP (10-1)%	•	- Court				
Tabla	Frecuencia	s observa	das							
SUMAS	181	527	708	Tab	la e _{ij}		Tabla (f _{ij}	- e _{ij})²/e _{ij}	χ2 _{exp} =	48,83
Paises / Año	2000	2015	SUMA			Sumas	36,35	12,48		
USA	100	178	278	71,07	206,93		11,78	4,04	Num. Clases =	10
UK	19	44	63	16,11	46,89		0,52	0,18		
Peoples R Ch	5	53	58	14,83	43,17		6,51	2,24		
Netherlands	8	26	34	8,69	25,31		0,06	0,02		
Canada	12	17	29	7,41	21,59		2,84	0,97		
Spain	1	25	26	6,65	19,35		4,80	1,65		
Australia	7	18	25	6,39	18,61		0,06	0,02		
Germany	2	23	25	6,39	18,61		3,02	1,04		
Taiwan	2	21	23	5,88	17,12		2,56	0,88		
Resto	25	122	147	37,58	109,42		4,21	1,45		

				SOCIOLOGY						
			Cor	traste χ2 de Pearson d TOP 1%	e homogen	eidad				
Tabla	Frecuenci	as observa	las							
SUMAS	27	93	120	Tab	la e _{ij}		Tabla (f _{ij}	- e _{ij}) ² / e _{ij}	χ2 _{exp} =	2,19
Paises / Año	2000	2015	SUMA			Sumas	1,70	0,49		
USA	18	47	65	14,63	50,38		0,78	0,23	Num. Clases =	2
Resto	9	46	55	12,38	42,63		0,92	0,27		

			SOCIO	LOGY							
			Con	traste χ2 de	Pearson de	homogene	idad				
				T	OP (10-1)%9	6		<u> </u>			
Tab	la Frecuenc	ias observac	das								
SUMAS	296	1161	1457		Tabl	a e _{ij}		Tabla (f _{ij}	- e _{ij})²/e _{ij}	χ2 _{exp} =	56,99
Paises / Año	2000	2015	SUMA				Sumas	45,41	11,58		
USA	152	331	483		98,12	384,88		29,58	7,54	um. Clases =	7
UK	35	172	207		42,05	164,95		1,18	0,30		
Australia	11	50	61		12,39	48,61		0,16	0,04		
Canada	6	44	50		10,16	39,84		1,70	0,43		
Netherlands	6	36	42		8,53	33,47		0,75	0,19		
Germany	5	32	37		7,52	29,48		0,84	0,21		
Resto	81	496	577		117,22	459,78		11,19	2,85		

			W							
			Con	itraste χ2 de Pearson o TOP 1%	le homogen	eidad				
_	a Frecuenci							. 3		
SUMAS	8	31	39	Tab	ıla e _{ij}		Tabla (f _{ij}	- e _{ij})² _/ e _{ij}	χ2 _{exp} =	1,97
Paises / Año	2000	2015	SUMA			Sumas	1,56	0,40		
USA	7	19	26	5,33	20,67		0,52	0,13	Num. Clases =	2
Resto	1	12	13	2,67	10,33		1,04	0,27		

								1			
		W	OMEN'S	S STUDIE	S						
	Contraste x2 de Pearson de homogeneio										
				T	OP (10-1)%9	6				_	
Tabl	a Frecuencia	as observa	das								
SUMAS	68	245	313		Tabl	la e _{ij}		Tabla (f _{ij}	- e _{ij})²/e _{ij}	χ2 _{exp} =	6,96
Paises / Año	2000	2015	SUMA				Sumas	5,44	1,51		
USA	47	147	194		42,15	151,85		0,56	0,16	um. Clases =	4
UK	10	22	32		6,95	25,05		1,34	0,37		
Canada	4	20	24		5,21	18,79		0,28	0,08		
Resto	7	56	63		13,69	49,31		3,27	0,91		

			Cor	itraste χ2 de Pearson d	e homogen	eidad				
				TOP 1%		_				
Tabla	Frecuencias	observad	las							
SUMAS	238	588	826	Tabl	a e _{ij}		Tabla (f _{ij}	- e _{ij})²/e _{ij}	χ2 _{exp} =	115,84
Paises / Año	2000	2015	SUMA			Sumas	82,46	33,38		
USA	118	118	236	68,00	168,00		36,76	14,88	Num. Clases =	9
Peoples R Ch	2	150	152	43,80	108,20		39,89	16,15		
UK	16	55	71	20,46	50,54		0,97	0,39		
Australia	8	27	35	10,08	24,92		0,43	0,17		
Canada	6	22	28	8,07	19,93		0,53	0,21		
Germany	4	17	21	6,05	14,95		0,70	0,28		
France	10	10	20	5,76	14,24		3,12	1,26		
Spain	6	14	20	5,76	14,24		0,01	0,00		
Resto	68	175	243	70,02	172,98		0,06	0,02		

		cc	MPUTER SO	CIENCE						
				e χ2 de Pearson de	homogen	eidad				
				TOP (10-1)%	%					
Tabla I	Frecuencias	observa	das							
SUMAS	2139	5577	7716	Tabla	a e _{ij}		Tabla (f _{ij} -	$(e_{ij})^2/e_{ij}$	χ2 _{exp} =	1105,4
Paises / Año	2000	2015	SUMA			Sumas	799,01	306,45		
USA	887	1010	1897	525,88	1371,12		247,98	95,11	Num. Clases =	3
Peoples R Ch	67	1243	1310	363,15	946,85		241,51	92,63		
UK	178	293	471	130,57	340,43		17,23	6,61		
Germany	126	181	307	85,11	221,89		19,65	7,54		
Australia	49	232	281	77,90	203,10		10,72	4,11		
Canada	87	192	279	77,34	201,66		1,21	0,46		
Italy	42	223	265	73,46	191,54		13,47	5,17		
France	95	151	246	68,20	177,80		10,54	4,04		
Spain	41	186	227	62,93	164,07		7,64	2,93		
India	22	180	202	56,00	146,00		20,64	7,92		
South Korea	40	142	182	50,45	131,55		2,17	0,83		
Taiwan	37	135	172	47,68	124,32		2,39	0,92		
Iran	3	140	143	39,64	103,36		33,87	12,99		
Japan	70	65	135	37,42	97,58		28,36	10,88		
Netherlands	53	70	123	34,10	88,90		10,48	4,02		
Singapore	19	87	106	29,38	76,62		3,67	1,41		
Turkey	11	84	95	26,34	68,66		8,93	3,43		
Switzerland	45	48	93	25,78	67,22		14,33	5,49		
Saudi Arabia	0	86	86	23,84	62,16		23,84	9,14		
Poland	17	60	77	21,35	55,65		0,88	0,34		
Greece	19	48	67	18,57	48,43		0,01	0,00		
Brazil	12	52	64	17,74	46,26		1,86	0,71		
Malaysia	0	62	62	17,19	44,81		17,19	6,59		
Denmark	28	30	58	16,08	41,92		8,84	3,39		
Israel	33	25	58	16,08	41,92		17,81	6,83		
Belgium	21	34	55	15,25	39,75		2,17	0,83		
Sweden	21	34	55	15,25	39,75		2,17	0,83		
Austria	16	38	54	14,97	39,03		0,07	0,03		
Finland	17	32	49	13,58	35,42		0,86	0,33		
Norway	8	30	38	10,53	27,47		0,61	0,23		
Portugal	5	33	38	10,53	27,47		2,91	1,12		
Mexico	4	31	35	9,70	25,30		3,35	1,29		
Russia	9	21	30	8,32	21,68		0,06	0,02		
Czech Repub	5	24	29	8,04	20,96		1,15	0,44		
Ireland	7	16	23	6,38	16,62		0,06	0,02		
New Zealand	5	18	23	6,38	16,62		0,30	0,11		
Pakistan	0	21	21	5,82	15,18		5,82	2,23		
Resto	40	220	260	72,08	187,92		14,27	5,48		

								1			
				ROBO	OTICS						
			Cor	itraste χ2 d	e Pearson d	e homogen	eidad				
					TOP 1%						
Tab	la Frecuenc	ias observa	das								
SUMAS	8	30	38		Tab	la e _{ij}		Tabla (f _{ij}	- e _{ij})²/e _{ij}	χ2 _{exp} =	0,00
Paises / Año	2000	2015	SUMA				Sumas	0,00	0,00		
Resto	8	30	38		8,00	30,00		0,00	0,00	Num. Clases =	1

			ROBO								
			Contra	ad							
				TOP (10	0-1)%%						
Tabla Fi	recuencia	s observada	S								
SUMAS	73	294	367		Tabl	a e _{ij}		Tabla (f _{ij}	- e _{ij})²/e _{ij}	χ2 _{exp} =	8,23
Paises / Año	2000	2015	SUMA				Sumas	6,60	1,64		
USA	30	77	107		21,28	85,72		3,57	0,89	um. Clases =	4
Peoples R China	3	27	30		5,97	24,03		1,48	0,37		
Italy	3	26	29		5,77	23,23		1,33	0,33		
Resto	37	164	201		39,98	161,02		0,22	0,06		

										_
				TOP 1%		_				
Tabla	Frecuencia	s observada	S							
SUMAS	48	156	204	Tab	la e _{ij}		Tabla (f _{ij}	- e _{ij})²/e _{ij}	χ2 _{exp} =	38,26
Paises / Año	2000	2015	SUMA			Sumas	29,26	9,00		
USA	33	35	68	16,00	52,00		18,06	5,56	Num. Clases =	3
Peoples R China	0	32	32	7,53	24,47		7,53	2,32		
Resto	15	89	104	24,47	79,53		3,67	1,13		

		TELE	сомми	JNICATIONS						
			Cor	itraste χ2 de Pearson (de homogen	eidad				
				TOP (10-1)9						
Tabla I	Frecuencias	observad	las							
SUMAS	425	1446	1871	Tal	ola e _{ij}		Tabla (f _{ij}	- e _{ij})²/e _{ij}	χ2 _{exp} =	259,08
Paises / Año	2000	2015	SUMA			Sumas	200,23	58,85		
USA	220	267	487	110,62	376,38		108,15	31,79	Num. Clases =	17
Peoples R Ch	9	284	293	66,56	226,44		49,77	14,63		
UK	20	112	132	29,98	102,02		3,32	0,98		
Canada	25	102	127	28,85	98,15		0,51	0,15		
Italy	22	67	89	20,22	68,78		0,16	0,05		
South Korea	12	63	75	17,04	57,96		1,49	0,44		
India	2	55	57	12,95	44,05		9,26	2,72		
Germany	17	38	55	12,49	42,51		1,63	0,48		
France	9	40	49	11,13	37,87		0,41	0,12		
Singapore	3	46	49	11,13	37,87		5,94	1,75		
Taiwan	10	38	48	10,90	37,10		0,07	0,02		
Australia	5	37	42	9,54	32,46		2,16	0,64		
Japan	17	22	39	8,86	30,14		7,48	2,20		
Sweden	11	25	36	8,18	27,82		0,97	0,29		
Spain	4	31	35	7,95	27,05		1,96	0,58		
Iran	2	20	22	5,00	17,00		1,80	0,53		
Resto	37	199	236	53,61	182,39		5,15	1,51		

ANEXO III. Contrastes de Kolmogorov-Smirnov sobre bondad de ajuste para cada categoría.

			MATHE	MATICS									
	Contraste Kolmogorov-Smirnov bondad de ajuste												
			ТОР	1%									
			n=	23731		D=	0,34612593						
Pais	X i	p _i	F _i ⁰	f _i	h _i	H _i	F _i ⁰ - H _i						
Algeria	1	0	0	251	0,01057688	0,01057688	0,01057688						
Australia	2	0,01067312	0,01067312	665	0,02802242	0,0385993	0,02792618						
Austria	3	0,00261326	0,01328639	136	0,0057309	0,0443302	0,03104381						
Belgium	4	0,03102908	0,04431546	181	0,00762715	0,05195736	0,00764189						
Brazil	5	0,00775727	0,05207273	60	0,00252834	0,05448569	0,00241296						
Bulgaria	6	0	0,05207273	64	0,00269689	0,05718259	0,00510986						
Byelarus	7	0	0,05207273	23	0,0009692	0,05815178	0,00607905						
Cameroon	8	0	0,05207273	47	0,00198053	0,06013232	0,00805959						
Canada	9	0,02655902	0,07863175	426	0,0179512	0,07808352	0,00054823						
Chile	10	0	0,07863175	65	0,00273903	0,08082255	0,0021908						
Czech Repub	11	0,00383737	0,08246912	0	0	0,08082255	0,00164657						
Denmark	12	0,01429043	0,09675955	156	0,00657368	0,08739623	0,00936332						
Egypt	13	0	0,09675955	142	0,00598373	0,09337997	0,00337959						
Finland	14	0,002572	0,09933155	187	0,00787999	0,10125996	0,0019284						
France	15	0,06799989	0,16733144	796	0,03354262	0,13480258	0,03252887						
Germany	16	0,05395703	0,22128848	1373	0,05785681	0,19265939	0,02862909						
Greece	17	0,0075097	0,22879817	372	0,0156757	0,20833509	0,02046308						

OPTICS

Contraste Kolmogorov-Smirnov bondad de ajuste

TOP 1%

			n=	23326		D=	0,15526504
Pais	X i	p _i	F _i ⁰	f _i	h _i	H _i	F _i ⁰ - H _i
Australia	1	0	0	993	0,04257052	0,04257052	0,04257052
Austria	2	0,06076989	0,06076989	0	0	0,04257052	0,01819936
Belgium	3	0	0,06076989	174	0,00745949	0,05003001	0,01073988
Canada	4	0,02132452	0,08209441	987	0,0423133	0,09234331	0,0102489
Cyprus	5	0	0,08209441	47	0,00201492	0,09435823	0,01226382
Czech Repub	6	0	0,08209441	65	0,00278659	0,09714482	0,01505041
Denmark	7	0,01654403	0,09863843	340	0,01457601	0,11172083	0,01308239
Finland	8	0,01031186	0,10895029	0	0	0,11172083	0,00277053
France	9	0,04500175	0,15395204	782	0,03352482	0,14524565	0,0087064
Germany	10	0,07768934	0,23164139	1089	0,0466861	0,19193175	0,03970964
Greece	11	0	0,23164139	86	0,00368687	0,19561862	0,03602276
India	12	0,02720629	0,25884767	206	0,00883135	0,20444997	0,0543977
Iran	13	0	0,25884767	44	0,00188631	0,20633628	0,0525114
Ireland	14	0,00520599	0,26405366	0	0	0,20633628	0,05771738
Israel	15	0	0,26405366	340	0,01457601	0,22091229	0,04314137
Italy	16	0,01266456	0,27671823	690	0,02958073	0,25049301	0,02622521
Japan	17	0,06049457	0,33721279	808	0,03463946	0,28513247	0,05208032

PHYSICS

Contraste Kolmogorov-Smirnov bondad de ajuste

			n=	6164		D=	0,43502695
Pais	$\mathbf{x_i}$	p _i	F _i ⁰	f _i	h _i	H _i	F _i ⁰ - H _i
Australia	1	0,00908626	0,00908626	465	0,07543803	0,07543803	0,06635177
Austria	2	0,00923669	0,01832295	36	0,00584036	0,08127839	0,06295544
Brazil	3	0,00785269	0,02617565	0	0	0,08127839	0,05510274
Cameroon	4	0	0,02617565	47	0,00762492	0,08890331	0,06272766
Canada	5	0	0,02617565	54	0,00876055	0,09766385	0,07148821
Denmark	6	0	0,02617565	35	0,00567813	0,10334199	0,07716634
Egypt	7	0	0,02617565	237	0,03844906	0,14179104	0,1156154
Finland	8	0	0,02617565	81	0,01314082	0,15493186	0,12875621
France	9	0,07891807	0,10509372	275	0,04461389	0,19954575	0,09445203
Germany	10	0,0920059	0,19709962	588	0,0953926	0,29493835	0,09783873
Hungary	11	0,01489304	0,21199266	45	0,00730045	0,30223881	0,09024615
India	12	0	0,21199266	140	0,02271252	0,32495133	0,11295867
Israel	13	0,01997774	0,23197039	37	0,0060026	0,33095393	0,09898353
Italy	14	0	0,23197039	276	0,04477612	0,37573005	0,14375965
Japan	15	0,01031982	0,24229022	262	0,04250487	0,41823491	0,17594469
Mexico	16	0	0,24229022	168	0,02725503	0,44548994	0,20319972
New Zealand	17	0	0,24229022	50	0,00811162	0,45360156	0,21131134

WATER RESOURCES

Contraste Kolmogorov-Smirnov bondad de ajuste

TOP 1%

			n=	8717		D=	0,15357084
Pais	x _i	p _i	F _i ⁰	f _i	h _i	H _i	F _i ⁰ - H _i
Australia	1	0,04495174	0,04495174	443	0,05082024	0,05082024	0,0058685
Austria	2	0,03210064	0,07705238	52	0,00596536	0,05678559	0,02026679
Belgium	3	0	0,07705238	44	0,00504761	0,0618332	0,01521918
Brazil	4	0,01447782	0,0915302	0	0	0,0618332	0,029697
Canada	5	0,03464917	0,12617937	365	0,0418722	0,1037054	0,02247397
Chile	6	0,0270578	0,15323718	0	0	0,1037054	0,04953177
Costa Rica	7	0	0,15323718	43	0,00493289	0,10863829	0,04459888
Denmark	8	0,02076781	0,17400499	78	0,00894803	0,11758633	0,05641866
Finland	9	0	0,17400499	117	0,01342205	0,13100837	0,04299661
France	10	0,02760004	0,20160503	245	0,028106	0,15911437	0,04249066
Germany	11	0,01686368	0,21846871	127	0,01456923	0,17368361	0,04478511
Greece	12	0	0,21846871	85	0,00975106	0,18343467	0,03503404
India	13	0	0,21846871	143	0,01640473	0,19983939	0,01862932
Iran	14	0	0,21846871	127	0,01456923	0,21440863	0,00406009
Ireland	15	0	0,21846871	152	0,01743719	0,23184582	0,01337711
Israel	16	0	0,21846871	40	0,00458873	0,23643455	0,01796584
Italy	17	0,04858475	0,26705346	165	0,01892853	0,25536308	0,01169038

DENTISTRY

Contraste Kolmogorov-Smirnov bondad de ajuste

			n=	3953		D=	0,26718855
Pais	$\mathbf{x_i}$	p _i	F _i ⁰	f _i	h _i	H _i	F _i ⁰ - H _i
Australia	1	0,02925305	0,02925305	0	0	0	0,02925305
Belgium	2	0,02338351	0,05263656	60	0,01517835	0,01517835	0,03745822
Brazil	3	0,01713528	0,06977185	251	0,06349608	0,07867442	0,00890258
Canada	4	0,01902869	0,08880053	0	0	0,07867442	0,01012611
Chile	5	0	0,08880053	63	0,01593726	0,09461169	0,00581116
Croatia	6	0	0,08880053	34	0,00860106	0,10321275	0,01441222
Cuba	7	0,0177033	0,10650383	0	0	0,10321275	0,00329108
Denmark	8	0	0,10650383	35	0,00885403	0,11206678	0,00556295
Estonia	9	0	0,10650383	29	0,0073362	0,11940299	0,01289915
Finland	10	0	0,10650383	92	0,02327346	0,14267645	0,03617261
France	11	0	0,10650383	26	0,00657728	0,14925373	0,0427499
Germany	12	0,03739468	0,14389851	258	0,06526689	0,21452062	0,0706221
Greece	13	0,02423554	0,16813405	0	0	0,21452062	0,04638656
Iceland	14	0	0,16813405	83	0,02099671	0,23551733	0,06738328
India	15	0	0,16813405	26	0,00657728	0,24209461	0,07396056
Ireland	16	0	0,16813405	27	0,00683026	0,24892487	0,08079081
Israel	17	0,02196346	0,19009751	29	0,0073362	0,25626107	0,06616356

HEALTH CARE SCIENCES AND SERVICES

Contraste Kolmogorov-Smirnov bondad de ajuste

TOP 1%

			n=	5546		D=	0,10688754
Pais	Xi	p _i	F _i ⁰	f _i	h _i	H _i	F _i ⁰ - H _i
Australia	1	0	0	189	0,03407862	0,03407862	0,03407862
Canada	2	0,06873453	0,06873453	514	0,09267941	0,12675802	0,0580235
Denmark	3	0	0,06873453	33	0,00595023	0,13270826	0,06397373
Finland	4	0	0,06873453	50	0,00901551	0,14172376	0,07298924
Germany	5	0	0,06873453	74	0,01334295	0,15506671	0,08633219
Greece	6	0	0,06873453	41	0,00739272	0,16245943	0,0937249
India	7	0	0,06873453	73	0,01316264	0,17562207	0,10688754
Italy	8	0,01740207	0,0861366	0	0	0,17562207	0,08948547
Morocco	9	0	0,0861366	47	0,00847458	0,18409665	0,09796005
Netherlands	10	0,04871123	0,13484782	232	0,04183195	0,2259286	0,09108077
New Zealand	11	0	0,13484782	34	0,00613054	0,23205914	0,09721132
Norway	12	0,05482744	0,18967526	0	0	0,23205914	0,04238388
South Korea	13	0	0,18967526	43	0,00775334	0,23981248	0,05013722
Spain	14	0	0,18967526	49	0,0088352	0,24864767	0,05897242
Sweden	15	0,01754769	0,20722295	248	0,04471691	0,29336459	0,08614164
Switzerland	16	0	0,20722295	58	0,01045799	0,30382257	0,09659962
UK	17	0,17948158	0,38670453	794	0,14316625	0,44698882	0,06028429

NURSING

Contraste Kolmogorov-Smirnov bondad de ajuste

			n=	2277		D=	0,33066061
Pais	\mathbf{x}_{i}	p _i	F _i ⁰	f _i	h _i	H _i	F _i ⁰ - H _i
Australia	1	0,05775662	0,05775662	226	0,0992534	0,0992534	0,04149678
Belgium	2	0	0,05775662	54	0,02371542	0,12296882	0,06521219
Canada	3	0,04013378	0,0978904	165	0,07246377	0,19543259	0,09754218
Germany	4	0,0219964	0,1198868	0	0	0,19543259	0,07554578
Ireland	5	0	0,1198868	45	0,01976285	0,21519543	0,09530863
Israel	6	0	0,1198868	40	0,01756697	0,23276241	0,1128756
Italy	7	0	0,1198868	43	0,0188845	0,2516469	0,1317601
Malaysia	8	0	0,1198868	19	0,00834431	0,25999122	0,14010441
Netherlands	9	0,03254438	0,15243118	113	0,0496267	0,30961792	0,15718674
New Zealand	10	0	0,15243118	18	0,00790514	0,31752306	0,16509188
Norway	11	0	0,15243118	27	0,01185771	0,32938076	0,17694958
Peoples R Ch	12	0	0,15243118	82	0,0360123	0,36539306	0,21296188
Qatar	13	0	0,15243118	31	0,0136144	0,37900747	0,22657629
South Korea	14	0	0,15243118	108	0,04743083	0,4264383	0,27400712
Spain	15	0	0,15243118	129	0,05665349	0,48309179	0,33066061
UK	16	0,2154618	0,36789298	230	0,1010101	0,58410189	0,21620891
USA	17	0,63210702	1	947	0,41589811	1	0

RESPIRATORY SYSTEM

Contraste Kolmogorov-Smirnov bondad de ajuste

TOP 1%

			n=	9684		D=	0,15174959
Pais	Xi	p _i	F _i ⁰	f _i	h _i	H _i	F _i ⁰ - H _i
Australia	1	0	0	69	0,00712515	0,00712515	0,00712515
Belgium	2	0,01607362	0,01607362	227	0,02344073	0,03056588	0,01449226
Brazil	3	0	0,01607362	62	0,00640231	0,03696819	0,02089457
Cameroon	4	0	0,01607362	70	0,00722842	0,04419661	0,02812299
Canada	5	0,03609144	0,05216506	641	0,06619166	0,11038827	0,05822321
Denmark	6	0	0,05216506	70	0,00722842	0,11761669	0,06545163
France	7	0,02154459	0,07370966	258	0,02664188	0,14425857	0,07054891
Germany	8	0,04173205	0,11544171	713	0,0736266	0,21788517	0,10244346
Hungary	9	0,01819416	0,13363586	0	0	0,21788517	0,08424931
Italy	10	0,01535264	0,14898851	431	0,0445064	0,26239157	0,11340307
Japan	11	0,02981467	0,17880317	194	0,02003304	0,28242462	0,10362145
Mexico	12	0,01386827	0,19267144	0	0	0,28242462	0,08975317
Netherlands	13	0,01026337	0,20293481	160	0,0165221	0,29894672	0,0960119
Peoples R Ch	14	0,02268968	0,2256245	319	0,03294093	0,33188765	0,10626315
Poland	15	0,01331693	0,23894143	0	0	0,33188765	0,09294622
South Africa	16	0	0,23894143	257	0,02653862	0,35842627	0,11948484
South Korea	17	0	0,23894143	81	0,00836431	0,36679058	0,12784915

BUSINESS

Contraste Kolmogorov-Smirnov bondad de ajuste

			n=	9345		D=	0,40907324
Pais	x _i	p _i	F_i^0	f _i	h _i	H _i	F _i ⁰ - H _i
Australia	1	0	0	930	0,09951846	0,09951846	0,09951846
Austria	2	0	0	92	0,00984484	0,1093633	0,1093633
Belgium	3	0	0	82	0,00877475	0,11813804	0,11813804
Canada	4	0	0	424	0,04537186	0,1635099	0,1635099
Chile	5	0,01894319	0,01894319	34	0,00363831	0,16714821	0,14820501
Colombia	6	0	0,01894319	45	0,00481541	0,17196362	0,15302042
Denmark	7	0	0,01894319	39	0,00417335	0,17613697	0,15719378
Finland	8	0	0,01894319	210	0,02247191	0,19860888	0,17966569
France	9	0	0,01894319	99	0,0105939	0,20920278	0,19025959
Germany	10	0	0,01894319	676	0,07233815	0,28154093	0,26259774
Iran	11	0	0,01894319	92	0,00984484	0,29138577	0,27244257
Ireland	12	0	0,01894319	38	0,00406635	0,29545211	0,27650892
Italy	13	0	0,01894319	69	0,00738363	0,30283574	0,28389255
Japan	14	0,05974204	0,07868523	37	0,00395934	0,30679508	0,22810984
Jordan	15	0	0,07868523	31	0,00331728	0,31011236	0,23142712
Malaysia	16	0	0,07868523	42	0,00449438	0,31460674	0,23592151
Netherlands	17	0	0,07868523	429	0,0459069	0,36051364	0,28182841

INFORMATION SCIENCE AND LIBRARY SCIENCE

Contraste Kolmogorov-Smirnov bondad de ajuste

TOP 1%

			n=	2713		D=	0,32933442
Pais	X i	p _i	F _i ⁰	f _i	h _i	H _i	F _i ⁰ - H _i
Australia	1	0	0	59	0,02174714	0,02174714	0,02174714
Canada	2	0,11485593	0,11485593	345	0,1271655	0,14891264	0,03405671
Finland	3	0	0,11485593	71	0,02617029	0,17508293	0,060227
Germany	4	0	0,11485593	214	0,07887947	0,2539624	0,13910647
India	5	0	0,11485593	40	0,01474383	0,26870623	0,15385029
Italy	6	0	0,11485593	40	0,01474383	0,28345006	0,16859412
Malaysia	7	0	0,11485593	32	0,01179506	0,29524512	0,18038918
Netherlands	8	0,13124504	0,24610098	151	0,05565794	0,35090306	0,10480208
Peoples R Ch	9	0,0359503	0,28205128	92	0,0339108	0,38481386	0,10276258
Portugal	10	0	0,28205128	87	0,03206782	0,41688168	0,1348304
South Korea	11	0	0,28205128	171	0,06302986	0,47991154	0,19786025
Spain	12	0	0,28205128	79	0,02911906	0,50903059	0,22697931
Switzerland	13	0	0,28205128	76	0,02801327	0,53704386	0,25499258
Taiwan	14	0,04176579	0,32381708	29	0,01068927	0,54773314	0,22391606
UK	15	0	0,32381708	286	0,10541836	0,65315149	0,32933442
USA	16	0,67618292	1	941	0,34684851	1	0
		0	0	0	0	0	0

SOCIOLOGY

Contraste Kolmogorov-Smirnov bondad de ajuste

			n=	3232		D=	0,21675393
Pais	X i	p _i	F_i^0	f _i	h _i	H _i	F _i ⁰ - H _i
Australia	1	0,02354145	0,02354145	51	0,0157797	0,0157797	0,00776175
Canada	2	0,07889143	0,10243288	115	0,03558168	0,05136139	0,05107149
Czech Repub	3	0	0,10243288	27	0,00835396	0,05971535	0,04271753
Denmark	4	0	0,10243288	27	0,00835396	0,06806931	0,03436357
Finland	5	0	0,10243288	25	0,00773515	0,07580446	0,02662842
France	6	0,04511456	0,14754744	24	0,00742574	0,0832302	0,06431724
Germany	7	0,02432879	0,17187623	92	0,02846535	0,11169554	0,06018069
Ireland	8	0	0,17187623	56	0,01732673	0,12902228	0,04285395
Italy	9	0,02417133	0,19604756	83	0,02568069	0,15470297	0,04134459
Netherlands	10	0	0,19604756	56	0,01732673	0,1720297	0,02401785
New Zealand	11	0	0,19604756	35	0,01082921	0,18285891	0,01318864
Norway	12	0	0,19604756	98	0,03032178	0,21318069	0,01713314
Peoples R Ch	13	0	0,19604756	188	0,05816832	0,27134901	0,07530145
Russia	14	0	0,19604756	22	0,00680693	0,27815594	0,08210839
Singapore	15	0	0,19604756	32	0,00990099	0,28805693	0,09200938
Spain	16	0	0,19604756	114	0,03527228	0,32332921	0,12728165
Sweden	17	0	0,19604756	26	0,00804455	0,33137376	0,13532621

WOMEN'S STUDIES

Contraste Kolmogorov-Smirnov bondad de ajuste

TOP 1%

			n=	668		D=	0,2915629
Pais	X i	p _i	F _i ⁰	f _i	h _i	H _i	F _i ⁰ - H _i
Australia	1	0	0	104	0,15568862	0,15568862	0,15568862
Israel	2	0	0	16	0,0239521	0,17964072	0,17964072
UK	3	0,08119159	0,08119159	129	0,19311377	0,37275449	0,2915629
USA	4	0,91880841	1	419	0,62724551	1	0
		0	0	0	0	0	0
		0	0	0	0	0	0
		0	0	0	0	0	0
		0	0	0	0	0	0
		0	0	0	0	0	0
		0	0	0	0	0	0
		0	0	0	0	0	0
		0	0	0	0	0	0
		0	0	0	0	0	0
		0	0	0	0	0	0
		0	0	0	0	0	0
		0	0	0	0	0	0
		0	0	0	0	0	0

COMPUTER SCIENCE

Contraste Kolmogorov-Smirnov bondad de ajuste

			n=	58611		D=	0,35650801
Pais	x _i	p _i	F _i ⁰	f _i	h _i	H _i	F _i ⁰ - H _i
Australia	1	0,02444162	0,02444162	2505	0,04273942	0,04273942	0,01829779
Austria	2	0	0,02444162	61	0,00104076	0,04378018	0,01933855
Belgium	3	0,00318179	0,02762341	49	0,00083602	0,0446162	0,01699279
Brazil	4	0,00266295	0,03028636	198	0,00337821	0,0479944	0,01770804
Canada	5	0,02253505	0,05282141	7345	0,12531777	0,17331218	0,12049076
Chile	6	0	0,05282141	130	0,00221801	0,17553019	0,12270878
Colombia	7	0	0,05282141	100	0,00170616	0,17723635	0,12441494
Czech Repub	8	0	0,05282141	69	0,00117725	0,17841361	0,12559219
Denmark	9	0,00371313	0,05653454	386	0,00658579	0,1849994	0,12846486
Egypt	10	0	0,05653454	537	0,0091621	0,19416151	0,13762697
Finland	11	0,0385065	0,09504104	316	0,00539148	0,19955298	0,10451195
France	12	0,03556225	0,13060329	805	0,01373462	0,21328761	0,08268432
Germany	13	0,01471498	0,14531827	3559	0,06072239	0,27401	0,12869173
Greece	14	0,00170029	0,14701856	850	0,0145024	0,2885124	0,14149384
Hungary	15	0,00309427	0,15011283	85	0,00145024	0,28996264	0,1398498
India	16	0,01680284	0,16691567	1230	0,02098582	0,31094846	0,14403279
Iran	17	0	0,16691567	258	0,0044019	0,31535036	0,14843469

ROBOTICS

Contraste Kolmogorov-Smirnov bondad de ajuste

TOP 1%

			n=	1967		D=	0,14732499
Pais	x _i	p _i	F_i^0	f _i	h _i	H _i	F _i 0 - H _i
Belgium	1	0	0	38	0,01931876	0,01931876	0,01931876
France	2	0	0	71	0,03609558	0,05541434	0,05541434
Germany	3	0	0	115	0,05846467	0,113879	0,113879
Greece	4	0	0	46	0,02338587	0,13726487	0,13726487
Italy	5	0,09865255	0,09865255	45	0,02287748	0,16014235	0,0614898
Japan	6	0,1852743	0,28392685	0	0	0,16014235	0,1237845
Malaysia	7	0	0,28392685	38	0,01931876	0,17946111	0,10446574
Peoples R Ch	8	0	0,28392685	103	0,05236401	0,23182511	0,05210174
Russia	9	0	0,28392685	55	0,02796136	0,25978648	0,02414038
Singapore	10	0,16843118	0,45235804	89	0,04524657	0,30503305	0,14732499
South Korea	11	0	0,45235804	50	0,02541942	0,33045247	0,12190557
Spain	12	0	0,45235804	414	0,2104728	0,54092527	0,08856723
Switzerland	13	0,26082772	0,71318576	139	0,07066599	0,61159126	0,1015945
USA	14	0,28681424	1	764	0,38840874	1	0
		0	0	0	0	0	0
		0	0	0	0	0	0
		0	0	0	0	0	0

TELECOMMUNICATIONS

Contraste Kolmogorov-Smirnov bondad de ajuste

			n=	17488		D=	0,40874184
Pais	$\mathbf{x_i}$	p _i	F _i ⁰	f _i	h _i	H _i	F _i
Australia	1	0	0	337	0,01927036	0,01927036	0,01927036
Canada	2	0,02600481	0,02600481	1217	0,06959058	0,08886093	0,06285612
Czech Republic	3	0	0,02600481	69	0,00394556	0,0928065	0,06680168
Denmark	4	0,02277217	0,04877698	295	0,01686871	0,10967521	0,06089822
Finland	5	0	0,04877698	142	0,00811985	0,11779506	0,06901808
France	6	0,01576811	0,0645451	409	0,02338747	0,14118253	0,07663743
Germany	7	0,00923099	0,07377609	427	0,02441674	0,16559927	0,09182318
Greece	8	0	0,07377609	394	0,02252973	0,188129	0,11435292
India	9	0	0,07377609	356	0,02035682	0,20848582	0,13470973
Israel	10	0	0,07377609	74	0,00423147	0,21271729	0,13894121
Italy	11	0,1932761	0,26705219	511	0,02922004	0,24193733	0,02511486
Japan	12	0	0,26705219	250	0,01429552	0,25623285	0,01081934
Kuwait	13	0	0,26705219	143	0,00817704	0,26440988	0,00264231
Netherlands	14	0,00951834	0,27657053	163	0,00932068	0,27373056	0,00283997
New Zealand	15	0	0,27657053	68	0,00388838	0,27761894	0,00104841
Peoples R China	16	0	0,27657053	3646	0,20848582	0,48610476	0,20953423
Portugal	17	0	0,27657053	104	0,00594694	0,49205169	0,21548117

MATHEMATICS

Contraste Kolmogorov-Smirnov bondad de ajuste

TOP (10-1)%

			n=	60817		D=	0,1769189
Pais	x _i	p _i	F _i ⁰	f _i	h _i	H _i	F _i ⁰ - H _i
Algeria	1	0	0	36	0,00059194	0,00059194	0,00059194
Argentina	2	0,00109589	0,00109589	144	0,00236776	0,0029597	0,0018638
Armenia	3	0	0,00109589	9	0,00014798	0,00310768	0,00201179
Australia	4	0,03109512	0,03219101	1219	0,02004374	0,02315142	0,00903959
Austria	5	0,00518252	0,03737353	554	0,0091093	0,03226072	0,00511281
Azerbaijan	6	0	0,03737353	59	0,00097012	0,03323084	0,00414269
Bangladesh	7	0	0,03737353	7	0,0001151	0,03334594	0,00402759
Belgium	8	0,01151043	0,04888396	618	0,01016163	0,04350757	0,00537638
Botswana	9	0	0,04888396	7	0,0001151	0,04362267	0,00526128
Brazil	10	0,01206191	0,06094586	643	0,0105727	0,05419537	0,00675049
Brunei	11	0	0,06094586	8	0,00013154	0,05432692	0,00661895
Bulgaria	12	0,00145648	0,06240234	35	0,0005755	0,05490241	0,00749993
Byelarus	13	0	0,06240234	35	0,0005755	0,05547791	0,00692443
Cameroon	14	0	0,06240234	62	0,00101945	0,05649736	0,00590498
Canada	15	0,03568373	0,09808607	1205	0,01981354	0,0763109	0,02177517
Chile	16	0,00258065	0,10066673	296	0,00486706	0,08117796	0,01948877
Colombia	17	0	0,10066673	58	0,00095368	0,08213164	0,01853509

OPTICS

Contraste Kolmogorov-Smirnov bondad de ajuste

						n=	
			n=	57503		D=	0,16214653
Pais	Xi	p _i	F_i^0	f _i	h _i	H _i	F _i ⁰ - H _i
Algeria	1	0	0	69	0,00119994	0,00119994	0,00119994
Argentina	2	0,00267848	0,00267848	63	0,0010956	0,00229553	0,00038295
Armenia	3	0,00071426	0,00339274	0	0	0,00229553	0,00109721
Australia	4	0,02667321	0,03006596	1286	0,02236405	0,02465958	0,00540637
Austria	5	0,0151669	0,04523286	364	0,0063301	0,03098969	0,01424317
Azerbaijan	6	0	0,04523286	18	0,00031303	0,03130271	0,01393015
Bangladesh	7	0	0,04523286	35	0,00060866	0,03191138	0,01332148
Belgium	8	0,00483243	0,05006529	536	0,00932125	0,04123263	0,00883266
Bosnia & Her	9	0	0,05006529	33	0,00057388	0,04180651	0,00825877
Brazil	10	0,00325882	0,05332411	285	0,00495626	0,04676278	0,00656133
Bulgaria	11	0,00280125	0,05612535	43	0,00074779	0,04751056	0,00861479
Byelarus	12	0,00387264	0,05999799	0	0	0,04751056	0,01248743
Canada	13	0,01777842	0,07777641	1644	0,02858981	0,07610038	0,00167604
Chile	14	0	0,07777641	14	0,00024347	0,07634384	0,00143257
Colombia	15	0,00106023	0,07883665	49	0,00085213	0,07719597	0,00164067
Croatia	16	0	0,07883665	14	0,00024347	0,07743944	0,00139721
Czech Repub	17	0,00128344	0,08012009	149	0,00259117	0,08003061	8,9478E-05

PHYSICS

Contraste Kolmogorov-Smirnov bondad de ajuste

TOP (10-1)%

			n=	16822		D=	0,09328419
Pais	Xi	p _i	F _i ⁰	f _i	h _i	H _i	F _i ⁰ - H _i
Algeria	1	0	0	12	0,00071335	0,00071335	0,00071335
Argentina	2	0,00132448	0,00132448	28	0,00166449	0,00237784	0,00105336
Australia	3	0,02187336	0,02319783	342	0,02033052	0,02270836	0,00048948
Austria	4	0,00502522	0,02822306	64	0,00380454	0,0265129	0,00171016
Belgium	5	0,00453828	0,03276134	107	0,00636072	0,03287362	0,00011228
Brazil	6	0,00465515	0,03741649	149	0,00885745	0,04173107	0,00431458
Bulgaria	7	0	0,03741649	26	0,0015456	0,04327666	0,00586017
Cameroon	8	0	0,03741649	15	0,00089169	0,04416835	0,00675186
Canada	9	0,03137843	0,06879492	354	0,02104387	0,06521222	0,0035827
Chile	10	0	0,06879492	25	0,00148615	0,06669837	0,00209655
Croatia	11	0	0,06879492	26	0,0015456	0,06824397	0,00055095
Czech Repub	12	0,00520052	0,07399544	50	0,0029723	0,07121626	0,00277918
Denmark	13	0,00465515	0,07865059	59	0,00350731	0,07472358	0,00392701
Egypt	14	0	0,07865059	57	0,00338842	0,078112	0,00053859
Estonia	15	0	0,07865059	20	0,00118892	0,07930092	0,00065032
Finland	16	0,00531739	0,08396798	163	0,00968969	0,08899061	0,00502263
France	17	0,0909994	0,17496738	1042	0,06194269	0,1509333	0,02403407

WATER RESOURCES

Contraste Kolmogorov-Smirnov bondad de ajuste

			n=	30331		D=	0,18469491
Pais	X i	p _i	F_i^0	f _i	h _i	H _i	F _i ⁰ - H _i
Argentina	1	0,00424911	0,00424911	41	0,00135175	0,00135175	0,00289736
Australia	2	0,05003124	0,05428036	1838	0,06059807	0,06194982	0,00766946
Austria	3	0,00224953	0,05652989	157	0,00517622	0,06712604	0,01059615
Bangladesh	4	0	0,05652989	54	0,00178036	0,0689064	0,01237651
Belgium	5	0,01705895	0,07358884	310	0,01022057	0,07912697	0,00553813
Bolivia	6	0,001583	0,07517184	0	0	0,07912697	0,00395513
Brazil	7	0,00901895	0,08419079	284	0,00936336	0,08849032	0,00429953
Brunei	8	0	0,08419079	19	0,00062642	0,08911675	0,00492595
Burundi	9	0	0,08419079	23	0,0007583	0,08987505	0,00568425
Canada	10	0,05090606	0,13509685	1269	0,04183838	0,13171343	0,00338343
Chile	11	0,00237451	0,13747136	49	0,00161551	0,13332894	0,00414242
Colombia	12	0,00204124	0,1395126	16	0,00052751	0,13385645	0,00565615
Croatia	13	0,00347844	0,14299104	0	0	0,13385645	0,00913459
Czech Repub	14	0,00406165	0,1470527	146	0,00481356	0,13867001	0,00838269
Denmark	15	0,00995626	0,15700896	363	0,01196795	0,15063796	0,006371
Egypt	16	0	0,15700896	181	0,00596749	0,15660545	0,0004035
Ethiopia	17	0	0,15700896	19	0,00062642	0,15723187	0,00022292

DENTISTRY

Contraste Kolmogorov-Smirnov bondad de ajuste

TOP (10-1)%

			n=	13641		D=	0,15536976
Pais	Xi	p _i	F _i ⁰	f _i	h _i	H _i	F _i ⁰ - H _i
Australia	1	0,01728245	0,01728245	113	0,00828385	0,00828385	0,0089986
Austria	2	0,02024594	0,03752839	90	0,00659776	0,01488161	0,02264678
Belgium	3	0,01656234	0,05409073	237	0,01737409	0,0322557	0,02183503
Brazil	4	0,01994128	0,07403202	1004	0,07360164	0,10585734	0,03182532
Canada	5	0,0205229	0,09455492	237	0,01737409	0,12323143	0,02867651
Chile	6	0	0,09455492	46	0,00337219	0,12660362	0,0320487
Colombia	7	0,00434831	0,09890323	10	0,00073308	0,12733671	0,02843348
Croatia	8	0	0,09890323	25	0,00183271	0,12916942	0,03026619
Denmark	9	0,02924722	0,12815045	182	0,01334213	0,14251155	0,0143611
Egypt	10	0	0,12815045	25	0,00183271	0,14434426	0,01619381
Estonia	11	0	0,12815045	10	0,00073308	0,14507734	0,01692689
Finland	12	0,03661441	0,16476486	174	0,01275566	0,157833	0,00693186
France	13	0,02750235	0,19226721	138	0,01011656	0,16794956	0,02431765
Germany	14	0,07483521	0,26710242	1030	0,07550766	0,24345722	0,0236452
Greece	15	0	0,26710242	26	0,00190602	0,24536324	0,02173918
Hungary	16	0,00282502	0,26992744	21	0,00153948	0,24690272	0,02302472
India	17	0	0,26992744	190	0,0139286	0,26083132	0,00909612

HEALTH CARE SCIENCES AND SERVICES

Contraste Kolmogorov-Smirnov bondad de ajuste

			n=	16761		D=	0,06084195
Pais	Xi	p _i	F_i^0	f _i	h _i	H _i	F _i 0 - H _i
Argentina	1	0,00277843	0,00277843	49	0,00292345	0,00292345	0,00014502
Australia	2	0,02639513	0,02917356	983	0,05864805	0,06157151	0,03239794
Austria	3	0	0,02917356	72	0,00429569	0,06586719	0,03669363
Belgium	4	0,00195082	0,03112438	107	0,00638387	0,07225106	0,04112668
Brazil	5	0,00218728	0,03331166	56	0,00334109	0,07559215	0,04228049
Burundi	6	0	0,03331166	14	0,00083527	0,07642742	0,04311576
Canada	7	0,08601324	0,1193249	1448	0,08639103	0,16281845	0,04349355
Czech Repub	8	0	0,1193249	16	0,0009546	0,16377304	0,04444815
Denmark	9	0,00957673	0,12890163	101	0,00602589	0,16979894	0,04089731
Ecuador	10	0	0,12890163	13	0,00077561	0,17057455	0,04167292
Estonia	11	0	0,12890163	26	0,00155122	0,17212577	0,04322414
Finland	12	0	0,12890163	45	0,0026848	0,17481057	0,04590894
France	13	0,01371483	0,14261646	109	0,00650319	0,18131376	0,03869731
Germany	14	0,02810948	0,17072594	410	0,02446155	0,20577531	0,03504937
India	15	0	0,17072594	66	0,00393771	0,20971302	0,03898708
Iran	16	0	0,17072594	72	0,00429569	0,21400871	0,04328277
Ireland	17	0	0,17072594	59	0,00352008	0,21752879	0,04680285

NURSING

Contraste Kolmogorov-Smirnov bondad de ajuste

TOP (10-1)%

			n=	9676		D=	0,20151044
Pais	x _i	p _i	F_i^0	f _i	h _i	H _i	F _i ⁰ - H _i
Australia	1	0,09932299	0,09932299	1325	0,13693675	0,13693675	0,03761377
Austria	2	0	0,09932299	9	0,00093014	0,13786689	0,0385439
Belgium	3	0,00610964	0,10543263	95	0,00981811	0,14768499	0,04225237
Brazil	4	0,00833884	0,11377147	102	0,01054155	0,15822654	0,04445507
Canada	5	0,06935271	0,18312417	601	0,06211244	0,22033898	0,03721481
Chile	6	0	0,18312417	13	0,00134353	0,22168251	0,03855834
Croatia	7	0	0,18312417	7	0,00072344	0,22240595	0,03928178
Cyprus	8	0	0,18312417	9	0,00093014	0,22333609	0,04021191
Denmark	9	0	0,18312417	96	0,00992146	0,23325754	0,05013337
Ethiopia	10	0	0,18312417	21	0,00217032	0,23542786	0,05230369
Finland	11	0,02930978	0,21243395	149	0,01539893	0,25082679	0,03839284
France	12	0	0,21243395	53	0,00547747	0,25630426	0,04387031
Germany	13	0,00949472	0,22192867	96	0,00992146	0,26622571	0,04429705
Ghana	14	0	0,22192867	14	0,00144688	0,26767259	0,04574393
Greece	15	0	0,22192867	45	0,00465068	0,27232327	0,05039461
Iceland	16	0	0,22192867	21	0,00217032	0,27449359	0,05256493
Iran	17	0	0,22192867	83	0,00857792	0,28307152	0,06114285

RESPIRATORY SYSTEM

Contraste Kolmogorov-Smirnov bondad de ajuste

			n=	23999		D=	0,07287139
Pais	$\mathbf{x_i}$	p _i	F_i^0	f _i	h _i	H _i	F _i ⁰ - H _i
Argentina	1	0,0016821	0,0016821	42	0,00175007	0,00175007	6,7975E-05
Australia	2	0,02168037	0,02336247	843	0,03512646	0,03687654	0,01351407
Austria	3	0,00488815	0,02825062	116	0,00483353	0,04171007	0,01345945
Belgium	4	0,01154465	0,03979527	334	0,01391725	0,05562732	0,01583204
Brazil	5	0,00132268	0,04111795	116	0,00483353	0,06046085	0,0193429
Canada	6	0,07974869	0,12086664	1333	0,05554398	0,11600483	0,00486181
Chile	7	0	0,12086664	40	0,00166674	0,11767157	0,00319507
Colombia	8	0,00346483	0,12433147	0	0	0,11767157	0,0066599
Croatia	9	0	0,12433147	26	0,00108338	0,11875495	0,00557653
Czech Repub	10	0	0,12433147	24	0,00100004	0,11975499	0,00457648
Denmark	11	0,00300477	0,12733625	219	0,00912538	0,12888037	0,00154412
Egypt	12	0	0,12733625	20	0,00083337	0,12971374	0,00237749
Estonia	13	0,00313417	0,13047041	0	0	0,12971374	0,00075667
Finland	14	0,00563575	0,13610616	39	0,00162507	0,13133881	0,00476735
France	15	0,05681753	0,19292369	1128	0,04700196	0,17834076	0,01458292
Germany	16	0,03456208	0,22748577	1469	0,06121088	0,23955165	0,01206588
Greece	17	0	0,22748577	79	0,0032918	0,24284345	0,01535768

BUSINESS

Contraste Kolmogorov-Smirnov bondad de ajuste

TOP (10-1)%

			n=	28163		D=	0,45744945
Pais	\mathbf{x}_{i}	p _i	F _i ⁰	f _i	h _i	H _i	F _i ⁰ - H _i
Argentina	1	0	0	11	0,00039058	0,00039058	0,00039058
Australia	2	0,01004497	0,01004497	1508	0,05354543	0,05393602	0,04389105
Austria	3	0,00277402	0,01281898	304	0,0107943	0,06473032	0,05191134
Bangladesh	4	0	0,01281898	12	0,00042609	0,06515641	0,05233743
Belgium	5	0,0025898	0,01540879	185	0,0065689	0,07172531	0,05631653
Brazil	6	0	0,01540879	93	0,00330221	0,07502752	0,05961873
Canada	7	0,02271225	0,03812104	1092	0,03877428	0,1138018	0,07568076
Chile	8	0	0,03812104	20	0,00071015	0,11451195	0,07639091
Colombia	9	0	0,03812104	52	0,00184639	0,11635834	0,0782373
Costa Rica	10	0	0,03812104	14	0,00049711	0,11685545	0,07873441
Czech Repub	11	0	0,03812104	59	0,00209495	0,1189504	0,08082936
Denmark	12	0,01341496	0,051536	324	0,01150446	0,13045485	0,07891885
Egypt	13	0	0,051536	21	0,00074566	0,13120051	0,07966451
Estonia	14	0	0,051536	10	0,00035508	0,13155559	0,08001958
Finland	15	0,00745517	0,05899117	530	0,01881902	0,1503746	0,09138344
France	16	0,01668744	0,0756786	719	0,02552995	0,17590456	0,10022595
Germany	17	0,01144281	0,08712142	1744	0,06192522	0,23782978	0,15070836

INFORMATION SCIENCE AND LIBRARY SCIENCE

Contraste Kolmogorov-Smirnov bondad de ajuste

			n=	8866		D=	0,27959268
Pais	\mathbf{x}_{i}	p _i	F_i^0	f _i	h _i	H _i	F _i ⁰ - H _i
Argentina	1	0,00403717	0,00403717	0	0	0	0,00403717
Australia	2	0,03562961	0,03966677	312	0,03519062	0,03519062	0,00447616
Austria	3	0,00877924	0,04844601	12	0,00135349	0,0365441	0,01190191
Belgium	4	0,01038129	0,0588273	85	0,00958719	0,04613129	0,01269601
Brazil	5	0	0,0588273	23	0,00259418	0,04872547	0,01010183
Canada	6	0,05850689	0,11733419	273	0,03079179	0,07951726	0,03781693
Chile	7	0	0,11733419	20	0,00225581	0,08177307	0,03556112
Czech Repub	8	0	0,11733419	10	0,0011279	0,08290097	0,03443322
Denmark	9	0,02486383	0,14219801	112	0,01263253	0,0955335	0,04666451
Estonia	10	0	0,14219801	21	0,0023686	0,0979021	0,04429592
Finland	11	0,01300865	0,15520666	178	0,0200767	0,1179788	0,03722787
France	12	0,00756168	0,16276834	123	0,01387322	0,13185202	0,03091632
Germany	13	0,00897148	0,17173983	476	0,05368825	0,18554027	0,01380044
Ghana	14	0	0,17173983	14	0,00157907	0,18711933	0,01537951
Greece	15	0	0,17173983	34	0,00383487	0,19095421	0,01921438
Hungary	16	0	0,17173983	11	0,00124069	0,1921949	0,02045507
India	17	0	0,17173983	92	0,01037672	0,20257162	0,03083179

SOCIOLOGY

Contraste Kolmogorov-Smirnov bondad de ajuste

TOP (10-1)%

			n=	8933		D=	0,27127023
Pais	\mathbf{x}_{i}	p _i	F _i ⁰	f _i	h _i	H _i	F _i ⁰ - H _i
Australia	1	0,04316503	0,04316503	469	0,05250196	0,05250196	0,00933693
Austria	2	0	0,04316503	42	0,00470167	0,05720363	0,01403859
Barbados	3	0,00238131	0,04554635	0	0	0,05720363	0,01165728
Belgium	4	0	0,04554635	105	0,01175417	0,0689578	0,02341145
Brazil	5	0	0,04554635	17	0,00190306	0,07086085	0,02531451
Canada	6	0,0212208	0,06676714	426	0,04768835	0,1185492	0,05178206
Chile	7	0	0,06676714	7	0,00078361	0,11933281	0,05256567
Colombia	8	0	0,06676714	26	0,00291056	0,12224337	0,05547622
Croatia	9	0	0,06676714	8	0,00089556	0,12313892	0,05637178
Czech Repub	10	0	0,06676714	46	0,00514945	0,12828837	0,06152123
Denmark	11	0,00473248	0,07149962	167	0,01869473	0,1469831	0,07548347
Egypt	12	0,0044009	0,07590053	0	0	0,1469831	0,07108257
Ethiopia	13	0	0,07590053	10	0,00111944	0,14810254	0,07220201
Finland	14	0	0,07590053	30	0,00335833	0,15146088	0,07556035
France	15	0,02269781	0,09859834	105	0,01175417	0,16321505	0,0646167
Germany	16	0,01561417	0,11421251	320	0,03582223	0,19903728	0,08482477
Greece	17	0,00274303	0,11695554	8	0,00089556	0,19993283	0,08297729

WOMEN'S STUDIES

Contraste Kolmogorov-Smirnov bondad de ajuste

			n=	2185		D=	0,14721003
Pais	X i	p _i	F_i^0	f _i	h _i	H _i	F _i ⁰ - H _i
Australia	1	0,03583062	0,03583062	137	0,06270023	0,06270023	0,02686961
Austria	2	0	0,03583062	9	0,00411899	0,06681922	0,0309886
Belgium	3	0	0,03583062	18	0,00823799	0,07505721	0,03922659
Brazil	4	0	0,03583062	13	0,00594966	0,08100686	0,04517625
Canada	5	0,06901466	0,10484528	173	0,0791762	0,16018307	0,05533779
Colombia	6	0	0,10484528	10	0,00457666	0,16475973	0,05991445
Costa Rica	7	0	0,10484528	7	0,00320366	0,16796339	0,06311811
Denmark	8	0	0,10484528	13	0,00594966	0,17391304	0,06906777
France	9	0	0,10484528	28	0,01281465	0,18672769	0,08188241
Germany	10	0	0,10484528	25	0,01144165	0,19816934	0,09332406
Hungary	11	0	0,10484528	12	0,00549199	0,20366133	0,09881605
India	12	0	0,10484528	6	0,002746	0,20640732	0,10156205
Israel	13	0,01974756	0,12459283	10	0,00457666	0,21098398	0,08639115
Italy	14	0	0,12459283	10	0,00457666	0,21556064	0,09096781
Japan	15	0	0,12459283	6	0,002746	0,21830664	0,0937138
Jordan	16	0	0,12459283	7	0,00320366	0,2215103	0,09691746
Kenya	17	0	0,12459283	10	0,00457666	0,22608696	0,10149412

COMPUTER SCIENCE

Contraste Kolmogorov-Smirnov bondad de ajuste

TOP (10-1)%

			n=	115607		D=	0,2599751
Pais	Xi	p _i	F _i ⁰	f _i	h _i	H _i	F _i ⁰ - H _i
Algeria	1	0,00037291	0,00037291	198	0,0017127	0,0017127	0,00133979
Argentina	2	0,00097531	0,00134822	108	0,0009342	0,0026469	0,00129868
Armenia	3	0	0,00134822	18	0,0001557	0,0028026	0,00145438
Australia	4	0,02286233	0,02421055	4967	0,04296453	0,04576712	0,02155657
Austria	5	0,00837616	0,03258671	772	0,0066778	0,05244492	0,01985821
Azerbaijan	6	0	0,03258671	35	0,00030275	0,05274767	0,02016096
Bahrain	7	0	0,03258671	14	0,0001211	0,05286877	0,02028206
Bangladesh	8	0,00051156	0,03309827	61	0,00052765	0,05339642	0,02029815
Barbados	9	0	0,03309827	41	0,00035465	0,05375107	0,0206528
Belgium	10	0,0103698	0,04346808	650	0,0056225	0,05937357	0,01590549
Bosnia & Her	11	0	0,04346808	51	0,00044115	0,05981472	0,01634664
Brazil	12	0,00699926	0,05046733	989	0,00855485	0,06836956	0,01790223
Brunei	13	0	0,05046733	69	0,00059685	0,06896641	0,01849908
Bulgaria	14	0,0003251	0,05079244	63	0,00054495	0,06951136	0,01871893
Canada	15	0,04280353	0,09359596	3806	0,03292188	0,10243324	0,00883728
Cape Verde	16	0	0,09359596	19	0,00016435	0,10259759	0,00900163
Chile	17	0,00035379	0,09394975	79	0,00068335	0,10328094	0,00933119

ROBOTICS

Contraste Kolmogorov-Smirnov bondad de ajuste

			n=	4594		D=	0,14280863
Pais	X i	p _i	F_i^0	f _i	h _i	H _i	F _i ⁰ - H _i
Australia	1	0,02737775	0,02737775	188	0,04092294	0,04092294	0,01354519
Austria	2	0,00854566	0,03592341	20	0,0043535	0,04527645	0,00935304
Bangladesh	3	0	0,03592341	23	0,00500653	0,05028298	0,01435957
Belgium	4	0	0,03592341	64	0,01393121	0,06421419	0,02829079
Brazil	5	0,01804083	0,05396423	0	0	0,06421419	0,01024996
Canada	6	0,09321095	0,14717519	180	0,03918154	0,10339573	0,04377945
Denmark	7	0	0,14717519	17	0,00370048	0,10709621	0,04007897
Finland	8	0	0,14717519	20	0,0043535	0,11144972	0,03572547
France	9	0,01266023	0,15983542	242	0,05267741	0,16412712	0,00429171
Germany	10	0,04984966	0,20968508	227	0,04941228	0,2135394	0,00385432
Greece	11	0,02373793	0,23342301	88	0,01915542	0,23269482	0,00072819
Hungary	12	0	0,23342301	44	0,00957771	0,24227253	0,00884952
India	13	0	0,23342301	198	0,0430997	0,28537222	0,05194921
Iran	14	0	0,23342301	45	0,00979539	0,29516761	0,0617446
Ireland	15	0,02057288	0,25399589	36	0,00783631	0,30300392	0,04900803
Israel	16	0	0,25399589	49	0,01066609	0,31367	0,05967412
Italy	17	0,03813895	0,29213483	375	0,08162821	0,39529822	0,10316338

TELECOMMUNICATIONS

Contraste Kolmogorov-Smirnov bondad de ajuste

			n=	38092		D=	0,34196716
Pais	Xi	p _i	F _i ⁰	f _i	h _i	H _i	F _i ⁰ - H _i
Argentina	1	0	0	54	0,00141762	0,00141762	0,00141762
Australia	2	0,00898585	0,00898585	939	0,02465085	0,02606847	0,01708262
Austria	3	0,00511728	0,01410313	133	0,00349155	0,02956001	0,01545688
Belgium	4	0,00734538	0,02144851	170	0,00446288	0,03402289	0,01257438
Brazil	5	0	0,02144851	176	0,00462039	0,03864328	0,01719478
Canada	6	0,06481073	0,08625924	2852	0,07487136	0,11351465	0,02725541
Chile	7	0	0,08625924	42	0,00110259	0,11461724	0,028358
Cyprus	8	0	0,08625924	106	0,00278274	0,11739998	0,03114074
Czech Repub	9	0	0,08625924	23	0,0006038	0,11800378	0,03174454
Denmark	10	0,0077861	0,09404535	231	0,00606427	0,12406805	0,0300227
Egypt	11	0	0,09404535	77	0,00202142	0,12608947	0,03204412
Finland	12	0,01211988	0,10616522	423	0,01110469	0,13719416	0,03102894
France	13	0,0186083	0,12477352	1090	0,02861493	0,16580909	0,04103558
Germany	14	0,03082611	0,15559963	979	0,02570093	0,19151003	0,0359104
Greece	15	0,00528867	0,1608883	539	0,01414995	0,20565998	0,04477168
Hungary	16	0	0,1608883	18	0,00047254	0,20613252	0,04524422
Iceland	17	0	0,1608883	17	0,00044629	0,20657881	0,04569051