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ABSTRACT Higher Education plays a principal role in the changing and complex world of today, and there
has been rapid growth in the scientific literature dedicated to predicting students’ academic success or risk of
dropout thanks to advances in Data Mining techniques. Degrees such as Computer Science in particular are
in ever greater demand. Although the number of students has increased, the number graduating is still not
enough to provide society with as many as it requires. This study contributes to reversing this situation by
introducing an approach that not only predicts the dropout risk or students’ performance but takes action to
help both students and educational institutions. The focus is on maximizing graduation rates by constructing
a Recommender System to assist students with their selection of subjects. In particular, the challenge is
addressed of constructing reliable Recommender Systems on the basis of data which are both sparse and few
in quantity, imbalanced, and anonymized, and which might have been stored under imperfect conditions.
This approach is successfully applied to create a Recommender System using a real-world dataset from a
public Spanish university containing performance data of a Computer Science degree course, demonstrating
its successful application in real environments. The construction of a support system based on that approach
is described, its results are evaluated, and its implications for students’ academic achievement, and for
institutions’ graduation rates are discussed. Through the construction of this decision support system for
students, we intend to increase the graduation rates and lower the dropout rate.

INDEX TERMS Computer education, data mining, decision support system, machine learning, recom-

mender systems, student dropout.

I. INTRODUCTION

A. IMPORTANCE OF MAXIMIZING GRADUATION RATES
IN THE ENGINEERING AREAS

There is no doubt about the importance of Higher Educa-
tion in Europe, and the relationship between education and
inequality is very significant across the continent [1]. The
number of students of Computer Science and Information
Technologies has been increasing considerably recently due
to the capacity of the field to transform our society [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Tallha Akram

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This fact poses a challenge that needs specific attention
from universities and the main educational institutions. But
this increasing number of Computer Science students is not
enough. While the demand for Computer Science education
is growing exponentially, the supply of researchers and spe-
cialists in the field is growing linearly, generating a large
gap [3].

Therefore, measures should be taken to maximize the num-
ber of students who graduate in Computer Sciences and Infor-
mation Technologies degree courses without deterioration in
the quality of the teaching, so as to ensure that society’s
demands can be met. One such measure could be to lessen
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the high dropout rate in this field, especially in the first
undergraduate year [4].

For this reason, beyond predicting whether or not a stu-
dent will finish by graduating successfully, it makes sense
to create a Recommender System capable of guiding them
towards choosing the subjects best suited to them individually
for the completion of their course. In this way, by creation
a decision support system for students, the graduation rate
can be optimized and each student’s success maximized in
accordance with their potential.

B. THE DIFFICULTY OF GATHERING QUALITY DATA
Creating a Recommender System or a predictive model
requires a certain amount of data. Higher Education institu-
tions produce large volumes of data related to their students’
performance and background. Proper use of this data can
be transformed into knowledge with which to improve the
educational processes. The problem is that, in many cases,
institutions do not save data properly (or do not collect it
at all), and, if they do, sharing personal data is only facili-
tated for specified, legitimate, and necessary purposes. Even
for these purposes, the data must be shared respecting the
appropriate security protocols, which is understandable but
not always easy. Indeed, in Europe, this is a very tedious
process which often ultimately leads to data, at least partially,
not being shared due to privacy policies.

The paucity of data available makes it harder to create
highly reliable predictive models or recommendation sys-
tems. Fortunately, advances in the Data Mining field provide
the opportunity of applying a wide variety of techniques and
methods that can make the most of the data so as to infer
knowledge. We shall take advantage of this to assist students
in their educational development through a decision support
system.

C. MAIN INNOVATION OF THE PAPER
In the light of the foregoing, the main innovation of the paper
lies in:

« Creating a strategy that makes the most of small datasets
to infer knowledge reliable enough to be deployed in
educational institutions in form of decision support sys-
tems to assist their students in choosing the subjects best
suited to each individual case.

o Making use of Recommender Systems instead of pre-
dictive models that are designed to forecast students’
performance and success or their dropout risk. With
Recommender Systems, it is possible to assist students
in choosing the right subjects for them, maximizing the
number of Computer Science and information technol-
ogy graduates, and improving the students’ experience
individually.

« Proposing an approach that, making use of such Data
Mining techniques as Feature Encoding, Feature Engi-
neering, Data Scaling, or Data Resampling, and some
well known Machine Learning algorithms such as
Random Forest, Support Vector Machine, or Logistic
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Regression among others, may be reproduced by
researchers or educational institutions with the aim
of improving students’ performance and successfully
increasing the number of Computer Science graduates
without the need for a large amount of data, and without
accessing students’ personal data.

D. RESEARCH QUESTIONS
The aforementioned facts led us to pose the following
research questions:

RS1 Is it possible, on the basis of a dataset with few
instances, to create reasonably accurate models that
can assist students in selecting the subjects best suited
to them?

RS2 What impact and what capacity do Data Mining
techniques such as Feature Encoding, Feature Engi-
neering, Data Scaling, or Data Resampling have on
generating knowledge from a dataset to help institu-
tions predict the success of their students even in the
absence of sufficient data?

RS3 Can one create a Decision Support System based on a
Recommender System that assists students in selecting
the subjects best suited to them, and thereby maximize
the number of Computer Science graduates, on the
basis of the models studied in Question 1 and the Data
Mining techniques noted in Question 27

The rest of this communication is organized as follows.
A student dropout and performance literature review and
related projects are presented in Section II. Section III
describes the proposed approach, providing a methodolog-
ical overview and detailing the baseline data and the algo-
rithms employed. Section IV addresses the creation of the
experiments after carrying out each processing technique
(encoding, feature engineering, scaling, and resampling) and
presents their results. Section V discusses the results of the
general approach. Finally, some conclusions and further con-
siderations are given in Section VII.

II. LITERATURE REVIEW

This section comprises an analysis of the most commonly
used algorithms for constructing recommender systems and
then presents a review of the more important published work
focused on the prediction of the students’ academic perfor-
mance and the prediction of the students’ dropout.

A. ALGORITHMS

The first types of algorithm that come to mind when think-
ing about Recommender Systems are Collaborative Filtering
and Content-Based algorithms. However, there are numerous
Recommender Systems that are built using classical regres-
sion or classification algorithms. In this work, we opted for
the second choice due to cold-start problems and the difficulty
of inferring similarities between subjects or students in small
datasets, in addition to lacking any additional personal data
of the students.
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Once the decision had been taken, there were still many
algorithms in the literature that could be used to create rec-
ommender models. We selected well-known classification
algorithms available in Scikit Learn [5], one of the most
popular Machine Learning libraries.

The algorithms selected are:

o Decision Tree. This consists of building a tree structure
in which each ramification represents a question about
an attribute. New branches are created based on the
answers to the question until reaching the leaves of the
tree (where the structure ends). The leaf nodes indicate
the predicted class.

e Random Forest. This is an improvement that creates
several Decision Trees, using bagging or some other
technique, and elects the most popular of their outputs.
Usually, the outputs are not counted directly, Instead,
the normalized frequencies of each output are summed
to get the label with the greatest probability. It can be
defined as: f = + Y"1, fi(x).

o Gradient Boosting Classifier. This consists of ensem-
bles constructed from Decision Tree models. Weak
Decision Tree models are built and new Decision Trees
are added one by one to the ensemble, trying to correct
the errors of the existing ones. The concept is based on
the idea of using a weak learning method several times
to get a succession of hypotheses, each one refocused on
the examples that the previous ones found difficult and
misclassified [6].

o Logistic Regression. This uses a more complex cost
function than the Linear Regression algorithm, which
is the Sigmoid or Logistic Function. Input values are
combined linearly using weights or coefficient values
to predict an output value. A key difference with linear
regression is that the output value being modeled is a
binary variable (0 or 1) rather than a numeric one. The
function can be defined as: f'(x) = ; +le —.

o Support Vector Machine. This algorithm classifies
through a separator. It works by taking data to high
multidimensional spaces where is possible to categorize
data otherwise not linearly separable. Then, the Sup-
port Vector Machine algorithm finds a hyperplane who
acts as a separator. As many possible hyperplanes can
be drawn, it is selected the hyperplane that provides a
greater margin between classes.

o k Nearest Neighbours. This algorithm is based on the
idea that cases of similar observations must be close to
each other in such a way that it is possible to classify
new cases based on their similarity with other previously
identified cases. Nearby cases are known as neighbours,
and the parameter k refers to the number of closest indi-
vidual observations used to classify a new observation.

o Multilayer Perceptron. Also known as Feed-Forward
Artificial Neural Network, this algorithm consists of
creating a set of levels, all of them interconnected.
Each level consists of a set of perceptrons (neurons or
nodes) receiving input and producing outputs. Weights
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are assigned to the outputs of the nodes. In this structure,
layer 1 receive are the inputs, the nodes in between
are ‘“‘hidden nodes” and the output is given by the last
layer. A Multilayer Perceptron can be defined as a DAG
(Directed Acyclic Graph) with weighted nodes.

B. RELATED WORK

Currently, exploitation of the data that educational institu-
tions have available is widespread, with the aim of generating
valuable information mainly regarding two aspects: analysing
their students’ performance, and predicting the risk of early
dropout. There is a growing body of literature in this respect.
A summary of some of this literature addressing Data Mining
and Machine Learning is given in the following paragraphs.

Regarding Higher Education students’ performance, in [7],
the factors having an impact on the success of university
students are explored through a piece of knowledge discovery
software created for that purpose. The software applies deci-
sion trees to a dataset that includes pre-processed student data
containing private information such as family income. In [8],
data that include student enrolment details as well as the
activity generated from the university learning management
system are used to predict the students’ performance in an
Australian university. Similarly, in [9], Machine Learning
algorithms are used to predict graduation rates in a Colom-
bian university. In [10], four types of mathematical models
designed to predict students’ academic performance in engi-
neering dynamics (a Higher Education subject) are developed
and compared.

Regarding Secondary Education, in [11] the students’ per-
formance is addressed through user-friendly decision support
software which predicts a student’s performance in the final
examinations of the academic year. It is worth noting that
the authors of this work mention that the dataset used is
imbalanced but they took no action in that regard. In [12],
Data Mining techniques are used to predict student success
in placement test outcomes in Turkey.

In this paper, improved conditional generative adversarial
network  based deep support vector machine
(ICGAN-DSVM) algorithm has been proposed to predict
students’ performance under supportive learning via school
and family tutoring.

Regarding Higher Education again, in [13], the authors
address the problem of predicting the student success rate
with the novelty that they deal with small datasets, recogniz-
ing that this fact limits the scope of Data Mining techniques.
In [14], the authors predict the student performance for select
candidates in higher education based on a reliable criteria.
In [15], conditional generative adversarial network based
deep support vector machine (ICGAN-DSVM) is proposed to
predict students’ performance under supportive learning via
school and family tutoring. In [16], the authors employed arti-
ficial intelligence models (Extreme Learning Machine and
random forest), together with mathematically-based second
order Volterra model to investigate the influence of continu-
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ous assessments on the first and second year of engineering
mathematics.

As can be seen, the number of studies related to student
performance is large. In addition to those noted above, [17]
present an overview and comparison of many others.

There have also been many research studies addressing
dropout prediction. In [18], the authors created methods
for identifying at-risk students at a U.S. university early in
the semester using performance data during that semester.
In [19], the students’ attendance, also in the first semester,
is analysed to predict dropout risk. In [20], the authors applies
the uplift modeling framework to the problem of student
dropout prevention and estimating the effects of actions such
as tutorial with the objective to improve the design of reten-
tion programs. In [21], well-known data mining classification
algorithms, predicts students’ overall academic performance
based on the information available at the end of the first
year of the students’ academic path at the University of Porto
(Portugal).

In contrast to the previous works, in [22], a decision sup-
port system is created to identify the dropout risk at registra-
tion time instead of during the semester. The authors include a
case study from a Belgian University. In [23], the problem of
predicting student failure is analysed in a Mexican university
taking into consideration, as we shall do here, the limitation
of using high-dimensional imbalanced datasets, which is very
frequent in this field.

In [24], the authors identify students that are at risk
of dropout or perform worse than they usually do by
extracting features from their historical grading combin-
ing the prediction of different features groups and models.
In [25], the authors presents two procedures for identifying
dropout-prone and non-achievers students early on in an
online university statistics course by means of tree-based
classification models.

Works such as [26]-[29], and [30] can also be cited. They
all have in common that they try to predict dropout from
online courses using Learning Management System (LMS)
data. The last three works focus on Massive Open Online
Courses (MOQOCs). The first of the five analyses the LMS
tracking data from a Blackboard Vista supported course,
identifying 15 variables strongly correlated with the student’s
final grade in a course of a Canadian university. The sec-
ond work analyses the LMS data of a Chinese distance
learning university, and provides two constraint strategies to
obtain two classes of valuable features: learning features and
temporal features. It also used students’ personal data, and
applied resampling techniques to reduce the imbalance of the
datasets. The third work collects data from a MOOC in elec-
tronics on the Coursera platform. It focuses on analysing the
learner’s interactions, taking into consideration the sequence
patterns derived from the self-paced characteristic of these
courses. The fourth work applies feature engineering methods
to generate significant features, and feature selection tech-
niques to reveal the main factors affecting dropout. The last
work, make use of the logit leaf model (LLM) algorithm
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because, although the predictive power is less effective than
some others (such as ensemble random forest or BOOST
models), it outperforms them in terms of interpretability.
As a result, they can provide insights into student dropout
behavior.

Table 1 presents a comparison of the work mentioned in
this section in such aspects as:

a) Objective;

b) Number of Instances;

¢) Number of Features;

d) Number of Classes of the Label Feature (we indicate
‘Numeric’ in the case that Regression algorithms are
used);

e) Use of Personal Data;

f) Data Processing Methods Applied; and

g) Scope.

The main focus of the related work noted above is on
predicting students’ performance or dropout risk. Although
prediction is very effective, it leaves future actions in the
hands of the educational institutions if they want to develop
specific policies to that end. With our approach, which is
to create a Recommender System that is not focused on
predicting or diagnosing student behaviour but acts directly,
trying to improve the situation, we ensure that actions are
taken to reverse any paths towards students’ failure and to
improve their performance.

Furthermore, we start from a very common situation in
which one has no access to a large number of records or to
personal data. Most of the studies analysed above consider
ideal circumstances with access to all types of data. But,
as some of them point out, these kinds of datasets usu-
ally have problems of high-dimensionality or imbalance that
need to be resolved. Additionally, they also need to consider
applying extensive data processing and feature engineering
techniques.

For these reasons, it is reasonable the use of Data
Mining techniques to assist students. We propose an
approach that deals with real-world problems, and cre-
ates a robust Recommender System that shows satisfactory
results.

Ill. OUR APPROACH

This section analyses the important parts of the work devel-
oped, and provides a general overview of the approach we
take to achieve the goal of creating a Recommender System
for suggesting subjects to students.

Firstly, we introduce an overview of the approach pre-
senting the main parts that compound the whole approach,
we outline the methodology behind our proposal, from han-
dling the data to constructing the Decision Support System.
After that, we describe in detail the main parts of the approach
which includes describing the original data that has been pro-
vided to us, and detailing the Feature Engineering, Encoding,
Scaling, and Resampling methods and techniques used in the
approach.
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TABLE 1. Summary of related work.

Research Work Objective # Instances # Features Label Personal Data Data Processing Methods Scope
Classes
Guruler et al. (2010) [7] Performance - 12 2 Yes Feature Engineering Higher Education
Helal et al. (2018) [8] Performance 2648 27 Numeric Yes Discretization Higher Education
Data Transformation
Huang and Fang (2013) [10] Performance 1907 8 Numeric Yes Discretization Higher Education
Scale and Normalize Data
Livieris et al. (2019) [11] Performance 2260 10 4 No Imbalanced Dataset Secondary School
Senetal. (2012) [12] Performance - 24 5 Yes N/A Secondary School
Mengash (2020) [14] Performance 2039 - 5 No N/A Higher Education
Chui et al. (2020) [15] Performance 1044 33 2 Yes N/A Higher Education
Deo et al. (2020) [16] Performance 3545 - 5 No Feature Extraction Higher Education
Feature Spaces
Natek and Zwilling (2014) [13] Performance - 12 Numeric Yes N/A Higher Education
Marbouti et al. (2016) [18] Dropout 3063 2 No Feature Selection Higher Education
Gray and Perkins (2019) [19] Dropout 4970 32 5 Yes Feature Selection Higher Education
Olaya et al. (2020) [20] Dropout 3362 60 2 Yes Feature Engineering Higher Education
Miguéis et al. (2018) [21] Dropout 2549 19 2 Yes N/A Higher Education
Hoffait and Schyns (2017) [22] Dropout 6845 9 2 Yes N/A Higher Education
Mirquez Vera and Ventura (2013) [23] Dropout 670 77 8 Yes Feature Selection Higher Education
Resampling Methods
Polyzou and Karypis (2019) [24] Dropout - - 4 No Feature Selection Higher Education
Feature Extraction
Figueroa and Sancho (2020) [25] Dropout 197 12 2 No Feature Extraction Higher Education
Feature Selection
Macfadyen and Dawson (2010) [26] Dropout 118 22 2 No N/A Higher Education
Chen et al. (2020) [27] Dropout 19679842 2 Yes Feature Engineering Higher Education
Feature Selection
Resampling
Moreno-Marcos et al. (2020) [28] Dropout - 37 2 No N/A MOOC
Qiu and Liu (2018) [29] Dropout 120542 212 2 No Feature Engineering MOOC
Feature Selection
Coussement et al. (2020) [30] Dropout 10554 122 2 No N/A MOOC
(Our proposal) Recommendation 6948 55 2 No Encoding Higher Education
Feature Engineering
Feature Extraction
Scaling
Resampling
A. OVERVIEW models that we can compare, and thus choose from among

The steps we followed to create the Decision Support System
based on a Recommender System are illustrated in Figure 1.
With these steps, we do not intend to define a formal method-
ology. Instead, they represent the guidelines on which our
approach is based, and we shall describe them in detail in the
course of this communication in order to facilitate replication
of the work and encourage its implementation.

The chain of steps that constitute this data-driven modeling
pipeline are optional in all cases, and these guidelines may be
adapted by the possible elimination, replacement, or adjust-
ment of the steps in accordance with the specific data and
problem specifications encountered.

As can be seen in Figure 1, our approach consists of four
main steps in which we make use of different data processing
techniques. Prior to passing through the main steps, a basic
Feature Engineering process is applied to the data. Once this
pre-processing has been done, the chain of steps that comprise
our approach is initiated. After applying each of the main
steps, a model is created and evaluated for each scenario using
each one of the selected Machine Learning algorithms based
on the status of the dataset at that particular moment. With
this mechanism, at the end of the process we obtain a list of
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them the best model depending on the issues being considered
to provide recommendations for Computer Science students.

o The first step (#1) consists of Encoding the features to
make them properly interpretable by Machine Learn-
ing algorithms. Most algorithms require some sort of
encoding of categorical features so that they can be
processed. We explored two feature encoding strategies:
Label Encoding and One-Hot Encoding.

o The second step (#2) consists of applying Feature Engi-
neering to create significant features. The Feature Engi-
neering process applied in this part of the work focuses
on creating new meaningful features based on the exist-
ing ones to help compensate for the lack of data.

o The third step (#3) consists of Scaling the data. We per-
form this operation to ensure that different scale ranges
in numeric features do not adversely affect the creation
of the models. We explored four data scaling strategies:
MinMax, Standard, Robust, and Normalization.

o Finally, the fourth step (#4) consists of Resampling
data to correct any imbalanced data that the dataset
may have. This pre-processing technique is necessary
since an unequal distribution of classes within the whole
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FIGURE 1. Set of processes followed to create the Decision Support System for Computer Science students.

dataset of observations can make it hard to predict the
minority classes. We explored three Resampling strate-
gies: upsample, downsample, and SMOTE.

B. PROCESSING TECHNIQUES
In this subsection, we shall describe in depth the chain of steps
laid out above.

1) ORIGINAL DATA
The data supplied to us were in the form of a CSV file,
qualifications.csv, containing the performance of
a total of 6948 observations of 323 undergraduates taking
the 45 subjects that comprise the Computer Science degree
course at a public Spanish University from 2010 to 2018. The
set of features (description, type, and classes) describing each
observation is listed in Table 2.

As can be seen, the small number of observations
aggravates the problem of creating a reliable Recommender
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TABLE 2. Set of features describing the qualifications.csv dataset.

Feature Type Classes

Degree Categorical ~ 1: {Computer Science Eng.}

Completion Year  Categorical  5: {13-14, 14-15, 15-16, 16-17, 17-
18}

Subject Categorical ~ 45: {List of subjects}

Credits Numerical 2: {6, 12}

Attempt Number ~ Numerical 6:{1,2,3,4,5,6}

Degree Year Numerical 4:{1,2,3,4}

Academic Year Categorical ~ 8: {10-11, 11-12, 12-13, 13-14, 14-
15, 15-16, 16-17, 17-18}

Call Categorical ~ 8: {JUN, FEB, JUL, JAN, SEP,
JAX, FEX, NOV}

Mark Categorical ~ 7: {Not Taken, Fail, Compensation,
Sufficient, Very Good, Outstanding,
With Honours}

Pass/Fail Categorical ~ 2: {Pass, Fail}

System, and it is for that very reason that we had to face
the challenge of developing a strategy to obtain an accurate
system even though the data is limited.
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2) FEATURE ENGINEERING: BASIC PRE-PROCESSING

To begin the data processing, basic Feature Engineering
techniques are applied. Feature Engineering is a process
that transforms data to create features that have better rep-
resentation, and are therefore better suited to creating pre-
dictive models [31], [32]. There is a wide range of such
techniques [33], and some have actually been applied to
Recommender Systems [34].

In the present work, we use the Feature deletion and Class
Reduction techniques. Feature Deletion consists of deleting
certain features directly from the original dataset (Table 2).
The reason is that they do not contribute to the generation
of knowledge. Class Reduction is applied because there are
features whose class fragmentation is high. Given its small
number of instances, it makes sense to reduce the number
of classes where possible so as to avoid high-dimensional
spaces.

3) ENCODING

In order to work properly, many algorithms require some pro-
cessing techniques to be applied to categorical data because
they are not set up to work with non-numerical features.
While it is true that many Machine Learning libraries and
services deal with categorical features in a way that is trans-
parent for researchers, Scikit Learn fails to do so. Whatever
the conditions of the libraries and services, it is interesting to
analyse the impact that this encoding may have on building
the recommender model.

In this process, we shall transform categorical features
into numerical features. To perform this transformation, two
encoding techniques are employed: Label Encoding and One-
Hot Encoding, each with its advantages and disadvantages.
Label Encoding consists of assigning an integer value in the
range {0, n— 1} to each feature class, with n being the number
of classes of the feature. One-Hot Encoding consists of, given
a feature with n classes, creating n new binary features.

4) FEATURE ENGINEERING: CREATING NEW FEATURES

This process consists of creating new features based on those
we already have in order to improve the quality of the predic-
tions. This is also a Feature Engineering process, but we deal
with it in a specific subsection because we think it is an issue
that requires detailed discussion.

The accuracy results so far are not good. We aim to improve
them through creating new features. Since we cannot access
new data, we need to make the most of the data we already
have.

5) SCALING DATA
Some Machine Learning algorithms tend to perform better
when the input features used to create the model are on similar
scales and close to being normally distributed. Additionally,
normally distributed data converge faster [5].

For these reasons, in the process of scaling data we apply
different scalers to our dataset with the aim of improving the
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quality of the predictions. As in the previous step, we con-
structed predictive models associated with the transformed
datasets for straightforward evaluation of the results.

We transformed the One-Hot Encoding dataset with the
new features with 4 different scalers: MinMax Scaler, Stan-
dard Scaler, Robust Scaler, and Normalizer Scaler. We make
use of these scalers because of the ease of setting them
up using Scikit Learn, although they are easy to implement
manually. We also appreciate the fact that is easy for readers
access these scalers and reproduce the experiments reported
in this paper. The selected scalers work as follows:

e MinMax Scaler. This scales each feature individually
to a given range. We set a [0, 1] range. The shape of
the distribution remains unchanged, and outliers remain
unaffected.

o Standard Scaler. This scales features by subtracting the
mean and scaling to unit variance, which makes individ-
ual features look like normally distributed data. It dis-
torts the relative distances between the feature values.

o Robust Scaler. This subtracts the median and scales the
data according to a specific quantile range. We defined
the range to be between the 1st and the 3rd quartiles
[25th quantile, T5th quantile]. By subtracting the
median instead of the mean, the effect of outliers is
reduced.

o Normalizer Scaler. This scales observations individually
to unit norm applying Euclidean normalization. In con-
trast with the other scalers, this scaler does not work on
features but on instances.

6) RESAMPLING METHODS
This process is involved in dealing with significant class
imbalance that may causes difficulties in predicting the label
class with few observations. To resolve this problem, specific
techniques need to be deployed to address the imbalance. This
process consists of applyng different Resampling methods
to mitigate the impact of the dataset class imbalance on the
predictive models’ accuracy.

The methods used are Upsample, Downsample, and
SMOTE, which can be defined as follows:

o Upsample. This consists of randomly duplicating
instances from the minority class until we get a 1:1 ratio
of the two classes.

e Downsample. This consists of randomly deleting
instances from the majority class until we get a 1:1 ratio
of the two classes.

e SMOTE. The Synthetic Minority Over-sampling Tech-
nique (SMOTE) [35] consists of synthesizing new
instances from real instances. It takes examples from the
minority class and looks for neighbours, i.e., the obser-
vations closest in the space. Once the neighbours have
been picked, lines are drawn between them, and new
observations which are spatially located on these lines
are created. The new observations are slightly different
from the real existing observations in contrast to the
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upsample method in which the new observations are
identical to existing ones.

IV. EXPERIMENTAL SETUP AND EXPERIMENTATION

This section describes the implementation of the set of pro-
cesses that transform the dataset. This set of processes, in the
form of a sequential chain of steps, was discussed briefly in
Section III along with the definition of the methods and tech-
niques that comprise the approach. In this section, we shall
describe in detail how they have been applied in order to
convey the knowledge as clearly and accurately as possible
to the reader. After the application of each step, a series of
experiments based on the processes applied are carried out
with the aim of evaluating its impact on the students’ Decision
Support System.

In addition, to ensure that the implementation and experi-
mentation exposed on this manuscript can be easily replicated
by other researchers (or data scientist) over their own data,
we have incorporated further technical details in Appendix C
with technical clarifications or additions facilitating and
enhancing such work.

A. PRE-PROCESSING
This step consists of applying the set of initial feature engi-
neering techniques Feature Deletion and Class Reduction.

The features that should in principle do not contribute to

the generation of knowledge are deleted. These features are:

o Degree. This consists of one class only, the number of
the degree.

o Completion Year. This indicates the year in which the
student finished the degree, which has no direct relation-
ship with the time of the observation.

« Credits. This appears as a numeric feature, but it does not
add any numerical attributes. It may have them in other
degree courses, but for the Computer Science subjects of
the university being analysed there are only two classes:
{6, 12}. Exploring this feature, we observed that all
the subjects but one have 6 credits, which means that
98.2% of the observations belong to the 6 class. For this
reason, given its inability to add meaning to the data, this
feature is deleted.

o Academic Year. This indicates the year in which the
student has taken the subject of the observation. It adds
no relevant information from which to infer knowledge
because academic years are treated in an isolated way,
and we have no further features with which to link them.

The features that, due to their high fragmentation may

provoke problems in high-dimensional spaces are:

o Call. Students have several opportunities to pass a sub-
ject during the academic year. The calls whose dates are
set for the end of the semester are termed ordinary
calls, and those spread over the rest of the academic
year are termed extraordinary calls. The dataset
had 8 classes for calls {JUN, FEB, JUL, JAN,
SEP, JAX, FEX, NOV}. We reduced this number
of classes to 2: {Ordinary, Extraordinary}
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where the Ordinary class grouped together the
dataset’s raw {JUN, FEB, JAN} classes, and the
Extraordinary class grouped together the dataset’s
raw {JUL, SEP, JAX, FEX, NOV} classes.
Table 3 shows the dataset after applying this section’s
Feature Engineering process.

TABLE 3. Set of features describing the qualifications.csv dataset
after applying the basic Feature Engineering pre-processing techniques.

Feature Type Classes
Subject Categorical ~ 45: {List of subjects}
Attempt Number ~ Numerical 6:{1,2,3,4,5,6}
Degree Year Numerical 4:{1,2,3,4}
Call Categorical ~ 2: {Ordinary, Extraordinary}
Pass/Fail Categorical ~ 2: {Pass, Fail}

B. ENCODING

Table 3 lists the data types of the features that make
up the qualifications dataset. As can be seen,
the {Subject, Call, Pass/Fail} features are cate-
gorical. As commented above, this may cause problems when
applying Machine Learning algorithms using the sklearn
library. The Pass/Fail feature is already naturally label
encoded and it is the target feature, but the other two features
need to be encoded before creating the models. The Label
Encoding and One-Hot Encoding transformations perform
the following operations over these features:
o Label Encoding

— The call feature classes are encoded into numer-
ical values. The Ordinary class is encoded as 0
and the Extraordinary class is encoded as 1.

— The subject feature classes are encoded into
numerical values. There exist 45 classes that are
encoded in the {0, 1, ..., 44} range of
values.

o One-Hot Encoding

— The call feature is deleted, and two new features,
corresponding to the two classes of the original
feature, are created. These new binary classes are
filled with 1s and Os depending on the class that
occurs in each instance, e.g., if the class of a partic-
ular observation in the call featureis Ordinary,
after the transformation the new Ordinary and
Extraordinary classes are filled with 1s and
0s, respectively.

— The subject feature is deleted, and 45 new fea-
tures, corresponding to the 45 classes of the origi-
nal feature, are created. These new binary classes
are filled with Is and Os, depending on the class
that occurs in each instance, e.g., if the class of a
particular observation in the subject feature is
Data Structures, after the transformation the
new Data Structures class is filled with 1s
and the rest of the classes with Os.

After the Label Encoding transformation, the number of
features of the dataset remains the same, as does the number
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of classes of each feature. After the One-Hot Encoding trans-
formation, the number of features of the dataset is 50, given
that the call feature is transformed into 2 new features and
the subject feature is transformed into 45 new features.
In consequence, there are now 2 datasets being the outcomes
of the corresponding encoding type, the Label Encoding
dataset and the One-Hot Encoding dataset. They comprise the
following features:

Label Encoding = {Subject, Attempt Number,

Degree Year, Call, Pass/Fail}

One-Hot Encoding = {Subjecto, ...,
Subjectqs, Attempt Number, Degree Year,
Ordinary, Extraordinary, Pass/Fail}

For each dataset, we constructed predictive models using
the 7 classification algorithms described in Subsection II-A,
making a total of 14 experiments. The results of these exper-
iments are presented in Table 4.

TABLE 4. Experimental results comparing Label Encoding and One-Hot
Encoding. (MLP: Multilayer Perceptron Neural Network, GBC: Gradient
Boosting Classifier, LR: Linear Regression, SVM: Suppor Vector Machine,
KNN: k Nearest Neighbour).

Encoding  Algorithm  Accuracy F1-Score
1 Label GBC 0.712023 [0.455, 0.8043]
2 One-Hot  GBC 0.708423 [0.449, 0.8018]
3 One-Hot LR 0.708423  [0.4841, 0.7968]
4 One-Hot ~ MLP 0.696904  [0.4128, 0.7957]
5 One-Hot DT 0.686105  [0.2945, 0.7981]
6 One-Hot ~ KNN 0.676746  [0.5308, 0.7534]
7 Label RF 0.673866 [0.5276, 0.751]
8 Label DT 0.668826  [0.3801, 0.7741]
9 One-Hot  RF 0.665947  [0.5207, 0.7436]
10 Label MLP 0.662347  [0.3153, 0.7759]
11 Label KNN 0.660187  [0.5193,0.7372]
12 Label LR 0.652268  [0.2907, 0.7697]
13 One-Hot SVM 0.650828 [0.0, 0.7885]
14 Label SVM 0.650828 [0.0, 0.7885]

The results of the experiments show One-Hot Encoding to
be the encoding type with generally better accuracy. Models
created using One-Hot Encoding comprised four of the five
top ranked. A curious point is that the encoding of the top
ranked model in terms of accuracy was Label Encoding.

Furthermore, although Label Encoding leaves a dataset
with fewer features, which is good, it causes some
issues regarding the interpretability of some features,
e.g., when features such as call or subject are
encoded following a Label Encoding strategy, a cardi-
nality is imposed on the classes of the features. For
instance, if three subjects are encoded as follows: {Data
Structures: 2, Mathematics: 4, Computer
Organization and Design: 6}, it may be assumed
that Mathematics is the average of Data Structures
and Computer Organization and Design. This is
another reason why we choose One-Hot Encoding as the
better encoding technique.

Analysing the accuracy, one can see that, at this
point, the greatest accuracy achieved is 0.712023. This
may seem good, but there is a class imbalance in the
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dataset. The class frequency of the Pass/Fail feature is
{Pass:0.650828, Fail:0.349172}, which means
that a model always predicting Pas s would have an accuracy
of 0.650828. This is precisely what is the case in the Sup-
port Vector Machine models. From this perspective, we can
state that the results of the models created are not good.

C. NEW FEATURES

Several new (and richer) features have been created during
the implementation of this process to improve the predic-
tion capabilities. Based on the existing dataset, these new
features are {Category, Student Success Rate,
Student Success Rate Category, Subject
Pass Rate, Subject Requirements}. They were
created as follows:

e Category. Subjects are categorized. There are sev-
eral ways to do this depending on the granularity of
the classification. We opted for the simplest possi-
ble classification so as to keep the number of classes
of the Category feature low. These classes are:
{Programming, Computer Architecture,
Mathematics, Business}.

e Student Success Rate. This feature is a metric
of the student’s performance up to the moment of taking
the instance subject. It is calculated by dividing the num-
ber of subjects the student has passed by the total number
of subjects. It is defined by the following equation:

m
Vs CS: SSR, = M, (1)
> izt (ns);
where S is the set of students that make up the dataset,
SSR is an abbreviation for Student Success
Rate, ns with card(ns) = j is the number of subjects
taken by student s, and ps C ns with card(ps) = i is the
number of subjects passed by student s.
It must be noted that this metric has a cold start problem,
i.e., for first-year students there are no previous records
from which to calculate it. For situations such as this,
the Student Success Rate feature is calculated
by dividing the number of times subjects have been
passed by the total number of times subjects have been
taken, as indicated in the following equation:
VsCS: SSRy = 2, )
nts

where nps is the total number of successful attempts to
pass subjects by all students and nts is the total number
of attempts to pass subjects by all students.
When this happens therefore, a generic metric is used for
all first-year students instead of a specific metric individ-
ually calculated for each one of them. The anonymized
data supplied to us prevents us from calculating this
metric individually for each first-year student. This deci-
sion is not risk-free because it clearly affects the rec-
ommendations to these first-year students by treating
them all the same, but the fact is that, in their first year,
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YEAR - SEMESTER

1. Semester 1

|

Semester 2

|

2. Semester 3

|

Semester 4

|

3. Semester 5

l

Semester 6

|

4. Semester 7

|

Semester 8

the students take the whole of that year’s subjects which
allows us to make decisions such as this.

Student Success Rate Category. This fea-
ture is a metric of the student’s performance in a specific
category up to the moment of taking the instance subject
in that category. It is calculated by dividing the number
of subjects the student has passed in that specific subject
category by the total number of subjects taken by the
student in that specific subject category, as indicated in
the following equation:

eril (psc);
Y= (nsce)i’

where S is the set of students that make up the dataset,
SSRC is as abbreviation for Student Success
Rate Category, psc with card(psc) = j is the
number of subjects taken by student s in the instance
category, and nsc C psc with card(nsc) = i is the
number of subjects passed by student s in the instance
category.

As was the case in the Student Success Rate
feature, the Student Success Rate Category
feature has the same cold start problem. The same rea-
soning is applied, and for first-year students this metric
is calculated as follows:

Vs C8§: SSRC, = (3

npsc

Vs C S SSRCs = &)

ntsc’
where npsc is the total number of successful attempts
to pass subjects in the instance category by all students,
and ntsc is the total number of attempts to pass subjects
in that category by all students.
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FIGURE 2. Required subjects that lecturers recommend to have successfully completed before taking their subject.

e Subject Pass Rate. This feature is a basic metric

of the overall students’ performance in specific subjects.
It is calculated by dividing the number of attempts in
which students have passed the subject by the total
number of attempts in which students have taken the
subject, as indicated in the following equation:

nsas
Vs CS: SPRy, = —, (5)
nas

where nsas is the total number of successful attempts to
pass a subject s by all students and nas is the total number
of attempts to pass that subject by all students.
Subject Requirements. There are some subjects
that have specific requirements that are set by the uni-
versity lecturers. Even though it is not mandatory to
successfully complete the required subjects in order to
take a given subject, it is advisable in the sense that the
knowledge acquired in the required subjects is useful in
that it should increase the chance of success in the given
subject.

A survey was conducted prior to the 2010/2011 aca-
demic year in which the lecturers responsible for each
subject expressed their opinion about which other sub-
jects were necessary to pass prior to taking theirs.
As a result, the university prepared the diagram shown
in Figure 2.

Based on that diagram, we created a new feature called
Subject Requirements which is calculated by
dividing the number of required subjects completed by
the total number of required subjects. When a subject
has no requirements we assume that all the requirements
have been completed.
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After creating these new features, we added them to
the dataset transformed after the application of One-Hot
Encoding. Using this new dataset, we constructed pre-
dictive models using the seven classification algorithms
described in Subsection II-A. The results of these exper-
iments together with those of the previous experiments
are shown in Table 5 sorted by Accuracy. For the sake
of readability of the paper, only the 20 best results are
listed.

TABLE 5. Experimental results after creating new features. (NF: New
Features, MLP: Multilayer Perceptron Neural Network, GBC: Gradient
Boosting Classifier, LR: Linear Regression, SVM: Suppor Vector Machine,
KNN: k Nearest Neighbour).

Encoding NF Algorithm  Accuracy F1-Score

1 One-Hot True  MLP 0.746580  [0.6009, 0.8143]
2 One-Hot True  GBC 0.742981  [0.5854, 0.8138]
3 One-Hot True LR 0.741541  [0.5859, 0.8121]
4 One-Hot True SVM 0.737941  [0.5439, 0.8162]
5 One-Hot True  KNN 0.727142 [0.5708, 0.8]
6 One-Hot True  RF 0.723542  [0.5789, 0.7942]
7 One-Hot True DT 0.712743 [0.5751, 0.783]
8 Label False GBC 0.712023 [0.455, 0.8043]
9 One-Hot False GBC 0.708423 [0.449, 0.8018]
10 One-Hot False LR 0.708423 0.4841, 0.7968]
11 One-Hot False ~MLP 0.696904 0.4128, 0.7957]

[
[

12 One-Hot False DT 0.686105  [0.2945, 0.7981]
[

13 One-Hot False KNN 0.676746 0.5308, 0.7534]
14 Label False RF 0.673866 [0.5276, 0.751]
15  Label False DT 0.668826  [0.3801, 0.7741]
16 One-Hot False RF 0.665947  [0.5207, 0.7436]
17 Label False = MLP 0.662347  [0.3153,0.7759]
18  Label False KNN 0.660187  [0.5193, 0.7372]
19  Label False LR 0.652268  [0.2907, 0.7697]
20  One-Hot False SVM 0.650828 [0.0, 0.7885]

In light of the results of these new experiments, we can state
that the models built using the datasets containing the new
features get better results in all cases. This means that new
features clearly contribute to increasing the accuracy of the
predictions. The greatest accuracy at this point, 0. 745860,
is achieved by the Multilayer Perceptron algorithm using
One-Hot Encoding, with an improvement of more than 3
percentage points.

Although the results are clearly better, they are still not
good enough to justify the creation of a Recommender Sys-
tem. They need to be improved to reach metrics which ensure
that the creation of a Recommender System to assist stu-
dents in choosing the right subjects will generate a notable
impact on the students’ progress in their course and on
the faculty’s capacity to increase the number of successful
graduates.

D. SCALING
The implementation of this step consists of applying the
4 scalers: MinMax, Standard, Robust, Normalizer to the
dataset obtained from the previous process.

After the application of this process we have 4 datasets,
each one as a result of applying one of the scaler techniques.
Subsequently, predictive models using the 7 classification
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algorithms discussed in Subsection II-A are constructed,
yielding the results presented in Table 6. Note that the Encod-
ing and New Features columns are omitted since in every
dataset {NewFeatures = True} and {Encoding = “One —
Hot”}.

TABLE 6. Experimental results after applying Scaling techniques. (NF:
New Features, MLP: Multilayer Perceptron Neural Network, GBC: Gradient
Boosting Classifier, LR: Linear Regression, SVM: Suppor Vector Machine,
KNN: k Nearest Neighbour).

Scaler Algorithm  Accuracy F1-Score

1 MinMax MLP 0.749460 [0.6142, 0.8145]
2 No MLP 0.746580  [0.6009, 0.8143]
3 Standard GBC 0.742981 [0.5854, 0.8138]
4 Robust GBC 0.742981 [0.5854, 0.8138]
5 MinMax GBC 0.742981 [0.5854, 0.8138]
6 No GBC 0.742981 [0.5854, 0.8138]
7 Robust LR 0.742261 [0.5876, 0.8126]
8 Standard LR 0.742261 [0.5876, 0.8126]
9 No LR 0.741541 [0.5859, 0.8121]
10 Robust SVM 0.740821 [0.5745, 0.8137]
11 Robust MLP 0.740821 [0.5881, 0.8109]
12 Normalizer ~GBC 0.739381 [0.569, 0.8132]
13 MinMax LR 0.739381 [0.582,0.8107]
14 MinMax SVM 0.739381 [0.5649, 0.814]
15  Standard MLP 0.739381 [0.5987, 0.807]
16  Normalizer ~MLP 0.738661 [0.6007, 0.8058]
17 Standard SVM 0.738661 [0.5704, 0.8122]
18 No SVM 0.737941 [0.5439, 0.8162]
19  Normalizer SVM 0.734341 [0.5263, 0.8154]
20 No KNN 0.727142  [0.5708, 0.8]

The greatest accuracy reached is 0.749460. There are
no major differences compared with the results obtained
before applying scaler techniques. Indeed, the dataset used
to build the second-ranked model was not scaled. While the
individual models present results that are slight improve-
ments, these improvements are still not enough, although
they will form the basis for applying further pre-processing
techniques.

Looking closely at Column F1-Score in Table 6, one
can see where the major problem lies in predicting in this
scenario, which needs to be more thoroughly analysed. The
F1-Score is the harmonic mean of recall and precision, and
is defined as follows:

F1-Score — 2 % (pr?c.lswn * recall) ©)

precision + recall

with the precision being defined as TP /(TP + FN) and recall
as TP/(TP + FP), where TP stands for True Positive, FN for
False Negative, and FP for False Positive, values that can be
obtained from a Confusion Matrix, a table layout in which
rows represent the actual class of instances and columns
represent the class predicted by the model.

In the best model constructed so far, the F1-Score for
the Fail class in the label feature is 0.6142 and 0.8145 for
the Pass class. This indicates the difficulties that this model
has at predicting the Fail class of the label. This problem is
common to all the models. It makes sense because, as noted
above, the label class frequencies are {Pass:0.650828,
Fail:0.349172}, reflecting a major class imbalance in
the dataset.
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E. RESAMPLING
As noted above, the qualifications dataset presents a
significant class imbalance. For that reason, the Upsample,
Downsample, and SMOTE methods described for resampling
in Subsection III-B are applied in order to deal with inbal-
anced datasets

Table 7 presents the results after completing the final
experiments with the implementation of the resampling meth-
ods. Encoding and New Features columns are omitted since
in every dataset { NewFeatures = True} and {Encoding =
“One — Hot"}.

TABLE 7. Experimental results after applying resampling techniques. (NF:
New Features, MLP: Multilayer Perceptron Neural Network, GBC: Gradient
Boosting Classifier, LR: Linear Regression, SVM: Suppor Vector Machine,
KNN: k Nearest Neighbour, RF: Random Forest, Alg: Algorithm).

Scaler Balance Alg. Accuracy  F1-Score

1 Robust Upsample RF 0.819879 [0.8308, 0.8075]
2 Robust Upsample GBC  0.761669 [0.779, 0.7414]

3 Robust Upsample MLP  0.757276 [0.774, 0.7378]

4 Robust Upsample SVM  0.756727 [0.7739, 0.7368]
5 Robust SMOTE RF 0.756178 [0.7638, 0.748]

6 Robust SMOTE GBC 0.752334  [0.7691, 0.733]

7 Robust SMOTE SVM  0.751236 [0.7754, 0.7212]
8 MinMax  No MLP  0.749460  [0.6142,0.8145]
9 Robust SMOTE MLP  0.748490  [0.7651, 0.7293]
10 No No MLP  0.746580  [0.6009, 0.8143]
11 Robust Upsample LR 0.744097 [0.7563, 0.7306]
12 MinMax No GBC  0.742981 [0.5854, 0.8138]
13 Standard No GBC  0.742981 [0.5854, 0.8138]
14 No No GBC  0.742981 [0.5854, 0.8138]
15  Robust No GBC  0.742981 [0.5854, 0.8138]
16  Standard No LR 0.742261 [0.5876, 0.8126]
17 Robust No LR 0.742261 [0.5876, 0.8126]
18  Robust SMOTE KNN  0.741900  [0.7587, 0.7226]
19 No No LR 0.741541 [0.5859, 0.8121]
20  Robust No SVM  0.740821 [0.5745, 0.8137]

It can be inferred from this table that resampling techniques
clearly improve the accuracy of the models’ predictions.
Indeed, 8 of the 10 top-ranked models in terms of accuracy
implement resampling techniques, and, in particular, the top 4
ranked models implement the upsample technique.

The model with greatest accuracy implements One-Hot
Encoding, Robust Scaler, Upsample resampling, and uses
the Random Forest algorithm, reaching an accuracy of
0.819879, an increase of 7 percentage points over the best
model created before implementing resampling techniques.

V. RESULTS

A. GENERAL RESULTS IN EVALUATING THE APPROACH
Over the course of Section IV, we have followed the evolution
of the models’ accuracies and F/-Scores. Our intention with
this was to illustrate how, with the application of different
pre-processing techniques, the resulting models get progres-
sively better. The evolution of the evaluation metrics after
the applications of the different pre-processing techniques
can be appreciated in Table 8. We have considered the best
model results at each step as reference values. Note that,
in contrast with previous tables, the Accuracy is displayed
as a percentage for the sake of readability, and the FI-Score
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shown is the average of the FI-Score class values shown
previously so as to better analyse its overall evolution.

One observes in the table that the creation of new fea-
tures and, above all, the application of resampling tech-
niques considerably improved the results. However, scaling
the data only slightly improved the best model. This might be
because the data lie within a homogeneous range of values
and there are few outliers, i.e., extreme values which conform
to unlikely observations. In spite of this, the application of
scaling techniques is kept in the data-driven guidelines of the
proposed approach for the reason that, given any dataset, its
normalization might clearly benefit the models, and, in any
event, it has no disadvantages beyond the computing time
required for processing. Although this computing time may
be relatively large, this should not be a problem given that the
proposed approach is for small datasets.

The resampling process is an important part of our
approach because it redresses the predictive errors deriving
from imbalanced datasets, a potential characteristic of many
small datasets in this area. If resampling techniques were
not applied, the models’ ability to predict the minority class
would be poor. In cases in which the dataset is not imbal-
anced, this step could be omitted.

The basic application of Feature Engineering techniques
to improve data representation and to create new features
based on the existing data becomes crucial for constructing
predictive models with an acceptable level of confidence
and accuracy. Although this is not without controversy since
adding new features may introduce biases and assumptions
into the data, as long as it is done with due caution, we would
encourage researchers and practitioners to consider applying
such techniques.

B. RESULTS OF SEGMENTATION ACCORDING TO THE
ACADEMIC YEAR

One of the steps of our approach consists of introducing new
features based on the existing data so as to enhance the pre-
dictive power of the models. As shown in Subsection I1I-B4,
the new {Category, Student Success Rate,
Student Success Rate Category, Subject
Pass Rate, Requirements} features were created.
These new features are calculated based on each student’s
behaviour, which cannot be done for first-year students, thus
creating biases between those students and the rest. For this
reason, we studied the results according to segmentation of
the academic year (see Table 9).

The results show that, as expected, the predictive capacity
for the first year is lower than for subsequent years. The
first-year accuracy is 0.785211 and the accuracy in sub-
sequent years is 0. 835594. It is thus necessary to evaluate
whether the model’s first-year accuracy is good enough to
validate deployment of the Recommender System to assist
students in choosing suitable subjects. Notwithstanding the
lower prediction capacity for first-year students, an accuracy
of 78.5% is still good, an improvement of 28 . 5 percentage
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TABLE 8. Evolution of the results after the application of pre-processing techniq FC: Frequent Class, NF: New Features.
Random FC Encoding NF Scaling  Resampling
Accuracy 50%  65.08% 71.20%  74.65% 74.94% 81.98%
—Increment - - +6.12%  +3.45% +0.29% +7.04%
F1-Score - - 0.6296 0.7076 0.7143 0.8191
—Increment - - - +0.078  +0.0067 +0.1048

TABLE 9. Results according to academic year segmentation (FY: First
Year, SY: Subsequent Years.

Model
Best Model

FY Accuracy
0.785211

SY Accuracy
0.835594

Accuracy
0.819879

points over random guessing, and more than 13 points over
the frequent class suggestion.

Whichever the case, in production it may result in the
Recommender System suggesting the same subjects to every
first-year student without attending to their individual char-
acteristics, since for this stage we have no information in
this sense. For this reason, the recommendations for this
stage should be taken with caution, and in any case following
the advice of professionals and respecting the students’ own
criteria. In the following stages, the Recommender System
is more focused on the students’ individual characteristics
and abilities, which most often coincide with what they like.
In these cases, the Recommender System attains an accuracy
of 83.5%, which is an excellent result in accordance with the
data available.

VI. DISCUSSION
In this section, several aspects of the approach will be dis-
cussed. One of the aims of this communication is to facilitate
the replication of this work by researchers and practitioners.
For this reason, it is worth discussing those characteristics of
our approach that may impact or influence research findings.
We can make a distinction between two levels of the char-
acteristics of the decisions adopted: those corresponding to
the scope of the work, and those corresponding to strategic
decisions.

The characteristics of the work that correspond to its scope
are:

a) Small dataset. As has been discussed above, the approach
is specifically conceived for small datasets. We consider
that a dataset with 6948 instances and 55 features (maxi-
mum number reached after the creation of new features)
is too small to infer knowledge without proper data pre-
processing, although it is true that many of these features
were created after the application of the encoding meth-
ods. In Table 1 summarizing a comparison of related
work, one can see that some of the studies analysed
have a similar number of instances but few of them
deal with this issue explicitly. In our experience, small
datasets generate problems. Disturbance from outliers
has a more direct effect. It is harder to deal with both
bias and variance in trying to create models that gen-
eralize well from the training data. And problems with
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overfitting the training data arise easily if the dataset
is consistent. We employed various techniques to avoid
these problems and to generate as much knowledge as
possible from the data we had.

b) Imbalanced dataset. The number of classes in our case
study dataset are not equally represented. This is because
each instance of the dataset corresponds to an attempt
to pass a subject. Students with many fails abandon
their studies, and students who tend to pass the subjects
successfully continue with their studies with a high pass
rate. This leads to the creation of an imbalanced dataset
in which there are significantly fewer observations in the
fail class than in the pass class. This is very common,
as noted in [23]. The present approach assumes that the
datasets are very likely to be imbalanced, and efforts are
made to correct any potential negative impact that this
might have. Scaling and Normalizing Data are used to
avoid outliers, and Resampling methods are applied to
handle imbalanced data. Additionally, the use of evalu-
ation metrics such as FI-Score helps to better evaluate
predictions in uneven class distribution datasets. In par-
ticular however, if the dataset is not imbalanced then the
use of Resampling methods should be avoided.

c) No use of personal data. The proposed approach does
not require the use of students’ personal data. This
ensures the students’ privacy, a matter that is becoming
more and more important every day. There is no doubt
that access to personal data could clearly improve the
model, as has been shown by studying previous work in
the literature. Nevertheless, the present approach does
not require any sharing of private data, which is often
not easily accessible anyway, and would involve much
time being spent on the required bureaucracy to deal
with privacy policies. The final result is thus to actually
facilitate the practical development and implementation
of the approach.

The characteristics of the work that correspond to strategic
decisions are:

d) Instance # Student. In our approach, the instances of
the dataset consist of students’ attempts to pass sub-
jects in a Computer Science degree course. Most of the
studies found in the literature use students and their
characteristics as instances. This is no minor assump-
tion. With students considered as instances, the resulting
models tend to “‘profile” the students’ characteristics
to make a prediction. With our approach, in addition
to the students’ overall characteristics, an individual
history analysis is applied to calculate numerical values
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that correspond to students considered separately, thus
considerably extending the overall understanding.

e) Predict vs Take Action. As noted before, one of the
main objectives of this proposal was to take action and
help both students and educational institutions — the
former by their achieving better academic results, and
the latter by maximizing the graduation rate and facili-
tating their decision-making processes. This represents
a step forward beyond prediction of dropout and student
performance which just identifies possible future events.
Instead, it has a real impact on students and educational
institutions.

VIi. CONCLUSION AND FUTURE WORK

This communication has focused on researching into the
prediction of students’ performance and academic trajecto-
ries, a widely explored topic as was shown in Section II:
Related Works. In contrast to most of those studies whose
focus has been on predicting academic performance, success,
or dropout, the novelty of the present work is that it has a
bearing on students’ progress by creating a Decision Sup-
port System that directly influences their academic path. The
study has not only dealt with predictions, but has also aimed at
helping students and faculty achieve better results by assisting
them in their decision-making.

The present study has described the design of a full
approach consisting of a set of guidelines for finding answers
to the three research questions raised. Following these
guidelines:

a) We have created models that assist students in selecting
the subjects best suited to them with reasonable accuracy
based on a dataset with few instances, answering affir-
matively the first research question. This is possible as
long as there are invaluable insights hidden in the scarce
data available, and that the data is properly processed.

b) With respect to the second research question, we have
empirically proven the capacity of Data Mining tech-
niques such as Feature Encoding, Feature Engineering,
Scaling Data, and Resampling to generate knowledge
from an imbalanced dataset so as to help institutions
predict the success of their students even in the absence
of sufficient data.

c¢) We have created a Decision Support System based
on a Recommender System using a dataset with few
instances and imbalanced frequencies in the class label
that is able to assist students in selecting the subjects
best suited to them, and thereby maximize the number
of those who graduate, thus answering affirmatively the
third research question.

All of the experimentation done in this study was on the
basis of real data of the Computer Science degree course in a
public Spanish University, ensuring that, at all times, the work
being developed involved real-life data, demonstrating the
usefulness of the proposed approach in real environments.

In future work, the Decision Support System can be
improved in the following ways:
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a) Deploy the Decision Support System in the university
enrollment system, and provide effective follow-up of
students’ academic path in comparison with the system
recommendations. This would serve to test the system’s
success at assisting students beyond the test data.

b) Design a follow-up strategy that allows the Recom-
mender System to be updated in accordance with
changes in the degree course’s organization. For exam-
ple, a lecturer or lecturers assigned to teach a given
subject are allocated to other subjects and replaced by
other faculty members. It would be interesting to add
to the dataset the lecturers that teach subjects for each
specific academic year.

¢) It would be interesting to calculate the new Subject
Requirements feature on the basis of the exact mark
earned by the students in the required courses instead of
just {Pass, Fail}. This may be a better indication
of the student’s knowledge.

d) Provide a wider scenario, not only focused on Computer
Science, for a better validation of the approach.

e) Additionally, given that students’ capability to select
subjects in the first year is limited, it could be interesting
to work with the educational centers that supply the
majority of students to the university to establish a joint
strategy to improve the students’ degree selection. Even
though it implies access to external data and collabo-
rative action beyond technical knowledge, it would be
worth assessing.
will require the access to external data not always easy
to acquire
-Authors focus on students in the first year since they
argue that dropout rate is higher, however capability
for students to select subjects in the first year is lim-
ited. Authors may think about describe an additional
scenario?

APPENDIX
A. DETAILED DESCRIPTION OF THE ORIGINAL DATASET

A detailed description of the original dataset is provided
in Table 10.

B. EXPERIMENTAL RESULTS

The complet list of experiment results is shown in Table 11
and Table 11b.

C. TECHNICAL DETAILS

This section is specifically created to provide specific content
and accurate technical details. This will make it easy for
other researchers or data scientists the replication of the work
and the experimentation reflected in this manuscript whether
for research purposes or for implementing this approach in
Higher Educational Institutions real scenarios.

This appendix has been divided into 5 subsections. Each
one of the subsection focus on a part of the experimentation
and specific source code and discussion is provided to deal
with concrete methods or techniques with the scope of the
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TABLE 10. Experimental results after creating new features.

Feature Classes

Type

Frequency

I class
5 classes

Degree
Completion Year

Categorical
Categorical

Subject Categorical 45 classes

Credits
Attempt Number

2 classes
6 classes

Numerical
Numerical

4 classes
8 classes

Degree Year
Academic Year

Categorical
Categorical

Call Categorical 8 classes

Mark Categorical 7 classes

Pass/Fail Categorical 2 classes

{ Computer Science Engineering:100% }

{2017-18: 35.0748%, 2016-17: 27.4180%, 2015-16: 20.2216%,
2014-15: 12.8670%, 2013-14: 4.4185%}

{Fundamentos de redes y comunicaciones: 0.055892, Fisica:
0.046096, Electrénica: 0.040046, Arquitectura de redes y proto-
colos: 0.035436, Andlisis y disefio de algoritmos: 0.035004, Ad-
ministracién y Organizaciéon de Computadores: 0.034572, Disefio
y Administracién de BBDD: 0.031403, Estructura de datos y
de la informacién: 0.030971, Programacién Concurrente y Dis-
tribuida: 0.030539, Disefio y Modelado de Software: 0.029818,
Programacion en internet: 0.029386, Estructura de computadores:
0.029098, Teoria de lenguajes: 0.028954, Desarrollo de progra-
mas: 0.028810, Algebra lineal: 0.027226, Calculo: 0.026217, Tec-
nologia de comptuadores: 0.024921, Introduccién a los computa-
dores: 0.023624, Gestién de los organizaciones: 0.022472, Bases
de datos: 0.021896, Inteligencia Artificial: 0.021752, Sistemas
Operativos: 0.021608, Arquitecturas software en entornos empre-
sariales: 0.020887, Ampliaciéon de Matemadticas: 0.020743, Es-
tadistica: 0.020743, Auditoria y legislacion informadtica: 0.020311,
Introduccién a la programacién: 0.020311, Ingenieria de software:
0.019735, Programacion de BBDD: 0.018438, Ingenieria de requi-
sitos: 0.018438, Disefio e interaccion de sistemas de informacion:
0.018294, Proyecto fin de grado: 0.018006, Gestién de proyectos
software: 0.018006, Economia y empresa: 0.015846, Imagen digi-
tal: 0.012532, Arquitecturas orientadas a servicios: 0.012532, Inge-
nierfa Web: 0.012100, Recuperacién de la Informacién y busqueda
en la web: 0.011236, Précticas externas: 0.010660, Mineria de
datos: 0.010372, Redes de comunicaciones: 0.006770, Seguridad
en redes telemdticas: 0.006338, Biometria y seguridad de sistemas:
0.004610, Procesamiento de la informacién multimedia: 0.004177,
Administracién de redes y servicios: 0.003169}

{6: 98.2009%, 12: 1.7991%}

{1: 84.5999%, 2: 12.3633%, 3: 2.4324%, 4: 0.5037%, 5: 0.0864%,
6:0.0144%}

{1: 28.0656%, 2: 29.6200%, 3: 25.3454%, 4: 16.9689% }
{2010-11: 6.2464%, 2011-12: 11.6149%, 2012-13: 17.7893%,
2013-14: 20.4951%, 2014-15: 19.4876%, 2015-16: 14.3926%.k
Nearest Neighbours 2016-17: 7.7001%, 2017-18: 2.2740%}
{JUN: 36.8020%, FEB: 19.9914%, JUL: 19.0271%, JAN:
17.2855%, SEP: 5.5124%, JAX: 0.7484%, FEX: 0.3742%, NOV:
0.2591%}

{Not Taken: 0.124064%, Fail: 0.219919%, Sufficient: 0.291019%,
Very Good: 0.260507%, Outstanding: 0.075993%, With Honours:
0.027634%, Compensation: 0.000864% }

Pass: 65.6016%, Fail: 34.3984%}
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Python programming language and the sklearn, pandas and
numpy libraries.

1) ENCODING
Due that many algorithms in sklearn are not set up to work
with non-numerical features, it is necessary to preprocess
categorical features before creating models with such algo-
rithms. Throughout this manuscript, the Label Encoding and
One-Hot Encoding encoding strategies have been discussed.

With respect to the source code, sklearn has the LabelEn-
coder() and the OneHotEncoder() methods in the preprocess-
ing library. This methods can encode the whole dataset. In our
implementation we have not used these methods and we have
deal with individual features separately.

The following listing shows the source code that perform
One-Hot Encoding on the Call feature:

1 df["Call"]=df["Call"].astype (' category’) .cat.codes

Listing 1. Label Encoding Example
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After the execution of this piece of code the {Ordinary,
Extraordinary} classes of the Call categorical feature are
encoded in numerical values: {0, 1}.

The following listing shows the source code that perform
One-Hot Encoding on the Call feature:

import pandas as pd

> dummy = pd.get_dummies (df["Call"]

3 df = pd.concat ([df, dummy], axis=1)
df.drop("Call", axis=1, inplace=True)

Listing 2. One-Hot Encoding Example

After the execution of this piece of code the Call cate-
gorical feature with classes {Ordinary, Extraordinary} will
be split into two new binary features: Ordinary and
Extraordinary.

2) SCALING

Machine Learning algorithms tend to perform better and
converge faster when input features are on similar scales and
close to being normally distributed. To do so, throughout
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TABLE 11. Complete list of experimental results. (Part 1/2).

Encoding NewFeatures Scaler Balance Algorithm Accuracy F1-Score
1 One-Hot  True Robust Upsample Random Forest 0.819879 [0.8308, 0.8075]
2 One-Hot  True Robust Upsample Gradient Boosting Classifier ~ 0.761669 [0.779, 0.7414]
3 One-Hot  True Robust Upsample MLP Neural Network 0.757276  [0.774, 0.7378]
4  One-Hot  True Robust Upsample Support Vector Machine 0.756727 [0.7739, 0.7368]
5 One-Hot True Robust SMOTE Random Forest 0.756178 [0.7638, 0.748]
6 One-Hot True Robust SMOTE Gradient Boosting Classifier ~ 0.752334 [0.7691, 0.733]
7  One-Hot  True Robust SMOTE Support Vector Machine 0.751236  [0.7754, 0.7212]
8 One-Hot True MinMax No MLP Neural Network 0.749460 [0.6142, 0.8145]
9 One-Hot True Robust SMOTE MLP Neural Network 0.748490 [0.7651, 0.7293]
10  One-Hot True No No MLP Neural Network 0.746580 [0.6009, 0.8143]
11 One-Hot  True Robust Upsample Logistic Regression 0.744097 [0.7563, 0.7306]
12 One-Hot True MinMax No Gradient Boosting Classifier ~ 0.742981 [0.5854, 0.8138]
13 One-Hot True Standard No Gradient Boosting Classifier — 0.742981 [0.5854, 0.8138]
14 One-Hot True No No Gradient Boosting Classifier ~ 0.742981 [0.5854, 0.8138]
15 One-Hot True Robust No Gradient Boosting Classifier ~ 0.742981 [0.5854, 0.8138]
16 One-Hot  True Standard No Logistic Regression 0.742261 [0.5876, 0.8126]
17 One-Hot  True Robust No Logistic Regression 0.742261 [0.5876, 0.8126]
18 One-Hot True Robust SMOTE k Nearest Neighbour 0.741900 [0.7587, 0.7226]
19 One-Hot  True No No Logistic Regression 0.741541 [0.5859, 0.8121]
20 One-Hot  True Robust No Support Vector Machine 0.740821 [0.5745, 0.8137]
21  One-Hot True Robust No MLP Neural Network 0.740821 [0.5881, 0.8109]
22 One-Hot  True Robust SMOTE Logistic Regression 0.740802 [0.7539, 0.7262]
23 One-Hot True Normalizer No Gradient Boosting Classifier ~ 0.739381 [0.569, 0.8132]
24 One-Hot True Standard No MLP Neural Network 0.739381 [0.5987, 0.807]
25 One-Hot  True MinMax No Logistic Regression 0.739381 [0.582,0.8107]
26 One-Hot  True MinMax No Support Vector Machine 0.739381 [0.5649, 0.814]
27 One-Hot  True Standard No Support Vector Machine 0.738661 [0.5704, 0.8122]
28 One-Hot True Normalizer No MLP Neural Network 0.738661 [0.6007, 0.8058]
29 One-Hot  True Robust Upsample k Nearest Neighbour 0.738056 [0.7545,0.7192]
30 One-Hot  True No No Support Vector Machine 0.737941 [0.5439, 0.8162]
31 One-Hot  True Normalizer No Support Vector Machine 0.734341 [0.5263, 0.8154]
32 One-Hot  True Robust Downsample  Support Vector Machine 0.734310 [0.7524, 0.7133]
33  One-Hot  True Robust Downsample Logistic Regression 0.731172  [0.7433,0.7179]
34  One-Hot True No No k Nearest Neighbour 0.727142 [0.5708, 0.8]
35 One-Hot True Normalizer No Random Forest 0.727142  [0.5794, 0.7981]
36 One-Hot True Normalizer No k Nearest Neighbour 0.725702  [0.5656, 0.7996]
37 One-Hot True Standard No Random Forest 0.724262 [0.5805, 0.7946]
38 One-Hot True MinMax No k Nearest Neighbour 0.723542 [0.5646, 0.7975]
39  One-Hot True MinMax No Random Forest 0.723542 [0.5789, 0.7942]
40 One-Hot True No No Random Forest 0.723542 [0.5789, 0.7942]
41 One-Hot True Robust No Random Forest 0.723542 [0.5799, 0.794]
42  One-Hot  True Normalizer No Logistic Regression 0.722822 [0.5133, 0.8062]
43 One-Hot True Robust SMOTE Decision Tree 0.722131 [0.7367, 0.7058]
44 One-Hot True Robust Downsample MLP Neural Network 0.721757 [0.7437, 0.6957]
45 One-Hot  True Robust Downsample  Gradient Boosting Classifier ~ 0.720711 [0.741, 0.6969]
46  One-Hot True Robust No k Nearest Neighbour 0.718503 [0.566, 0.7917]
47 One-Hot  True Robust Downsample k Nearest Neighbour 0.717573  [0.7278, 0.7065]
48 One-Hot True Normalizer No Decision Tree 0.714183 [0.5093, 0.7984]
49 One-Hot  True Robust Downsample Random Forest 0.713389 [0.7215, 0.7047]
50 One-Hot True MinMax No Decision Tree 0.712743 [0.5751, 0.783]
51 One-Hot True Standard No Decision Tree 0.712743 [0.5751, 0.783]
52 One-Hot True Robust No Decision Tree 0.712743 [0.5751, 0.783]
53  One-Hot True No No Decision Tree 0.712743 [0.5751, 0.783]
54  One-Hot True Robust Downsample Decision Tree 0.712343 [0.7383, 0.6806]
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TABLE 11. (Continued.) Complete list of experimental results. Part (2/2).

Encoding NewFeatures Scaler Balance Algorithm Accuracy F1-Score
55 Label False No No Gradient Boosting Classifier  0.712023 [0.455, 0.8043]
56 One-Hot True Standard No k Nearest Neighbour 0.712023 [0.5413, 0.7901]
57 One-Hot  False No No Logistic Regression 0.708423 [0.4841, 0.7968]
58 One-Hot False No No Gradient Boosting Classifier  0.708423 [0.449, 0.8018]
59 One-Hot  True Robust Upsample Decision Tree 0.708402 [0.7475, 0.655]
60 One-Hot False No No MLP Neural Network 0.696904 [0.4128, 0.7957]
61 One-Hot False No No Decision Tree 0.686105 [0.2945, 0.7981]
62 One-Hot False No No k Nearest Neighbour 0.676746  [0.5308, 0.7534]
63 Label False No No Random Forest 0.673866 [0.5276, 0.751]
64 Label False No No Decision Tree 0.668826 [0.3801, 0.7741]
65 One-Hot False No No Random Forest 0.665947 [0.5207, 0.7436]
66 Label False No No MLP Neural Network 0.662347 [0.3153, 0.7759]
67 Label False No No k Nearest Neighbour 0.660187 [0.5193, 0.7372]
68 Label False No No Logistic Regression 0.652268 [0.2907, 0.7697]
69 Label False No No Support Vector Machine 0.650828 [0.0, 0.7885]
70 One-Hot  False No No Support Vector Machine 0.650828 [0.0, 0.7885]

this manuscript, the Standard Scaler, Robust Scaler, MinMax
Scaler and Normalizer scalers scaling strategies available in
Python have been discussed.

The sklearn library have specific methods for dealing with
this process. The following listing shows the source code
that performs the different Scaling strategies that we have
followed in our experimentation:

I from sklearn.preprocessing import StandardScaler
> from sklearn.preprocessing import RobustScaler

3 from sklearn.preprocessing import MinMaxScaler

4 from sklearn.preprocessing import Normalizer

6 standard_scaler = StandardScaler (
7 Xtr_s = standard_scaler.fit_transform(xtrain)
s Xte_s = standard_scaler.transform(xtest)

10 robust_scaler = RobustScaler ()
11 Xtr_r robust_scaler.fit_transform(xtrain)
12 Xte_r robust_scaler.transform(xtest)

14 minmax_scaler = MinMaxScaler (feature_range=(0,1)
15 Xtr_mm = minmax_scaler.fit_transform(xtrain)
16 Xte_mm = minmax_scaler.transform(xtest)

18 normalizer_scaler = Normalizer ()
19 Xtr_n = normalizer_scaler.fit_transform(xtrain)
20 Xte_n = normalizer_scaler.transform(xtest)

Listing 3. Scaling Strategies Example

1 from sklearn.utils import resample

# Separate majority and minority classes
\ df_majority = df[df[’Pass/Fail’]==1]
s df_minority = df[df[’Pass/Fail’]==0]

7 # Upsample minority class

s df_upsample = resample

9 (df_minority,

10 replace=True, # sample with replacement
11 n_samples=4552, # to match majority class

12 random_state=123) # reproducible results

14 # Combine majority class with upsampled class
15 df_upsample=pd.concat ([df_majority, df_upsample])

Listing 4. Upsample Resampling Strategy Example
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3) RESAMPLING

Models built using imbalance datasets may have difficulties
predicting classes with few observations in the label class.
Throughout this manuscript, Upsample, Downsample and
SMOTE strategies available in Python have been used to
mitigate such a problem.

The sklearn library have specific utilities to deal with this
problem. The following pieces of code performs the different
Resampling strategies that we have followed throughout the
manuscript:

from sklearn.utils import resample

3 # Separate majority and minority classes
4+ df_majority = df[df[’Pass/Fail’]==1]
s df_minority = df[df[’Pass/Fail’]==0]

7 # Downsample majority class

s df_downsample = resample

9 (df_majority,

10 replace=False, # sample without replacement
1 n_samples=2390, # to match mainority class

12 random_state=123) # reproducible results

14 # Combine minority class with downsampled class
15 df_downsample=pd.concat ( [df_downsample,
df_minorityl])

Listing 5. Downsample Resampling Strategy Example

I from imblearn.over_sampling import SMOTE

3 resample = SMOTE (

4 sampling_strategy='minority’,
5 random_state=5,

6 k_neighbors=5)

8§ Xsmote, Ysmote = resample.fit_resample (

9 df.drop (' Pass/Fail’,axis=1),
10 df [’ Pass/Fail’])

Listing 6. SMOTE Resampling Strategy Example
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4) ALGORITHMS

To create the recommender system models we have selected
some well-known classification algorithms. Implementations
of these algorithms are in the sklearn library.

#Decision Tree

from sklearn.tree import DecisionTreeClassifier

3 model = DecisionTreeClassifier (

4 criterion="entropy",
5 max_depth = 4)

7 #Random Forest
8 from sklearn.ensemble import
RandomForestClassifier

10 model = RandomForestClassifier(
11 n_Jjobs=2,
12 random_state=0)

14 #Support Vector Machines
15 from sklearn import svm
16 model = svm.SVC (kernel='rbf’)

18 #KNN
19 from sklearn.neighbors import KNeighborsClassifier
20 model = KNeighborsClassifier (n_neighbors = 5)

2 #Multilayer perceptron (neural networks)
23 from sklearn.neural_network import MLPClassifier
24 model = MLPClassifier(

25 hidden_layer_sizes=(8,8,8),
26 activation='relu’,

27 solver='"adam’,

8 max_iter=500)

30 #GradientBoostingClassifier

31 from sklearn.ensemble import
GradientBoostingClassifier

32 model = GradientBoostingClassifier ()

34 #Logistic Regression

35 from sklearn.linear_model import
LogisticRegression

36 model = LogisticRegression ()

Listing 7. Algorithms instantiation and hyperparameters

The following pieces of code show the instantiation and
application of these algorithms and the set of hyperparame-
ters for each one of them.

Before creating the models the datasets have been properly
split in Train and Test, as shown in the next piece of code.

In all cases, to create the model and make the prediction,
the following code has been used.
from sklearn.metrics import accuracy_score
> X = df.drop(’Pass/Fail’,axis=1)

Y = df[’Pass/Fail’]
from sklearn.model_selection import
train_test_split

xtrain, xtest, ytrain, ytest = train_test_split (X,
Y, test_size=0.2, random_state=4)

n

Listing 8. Train/ Test Split

model. fit (Xtrain, ytrain)
prediction = model.predict (Xtest)

Listing 9. Fitting models and predicting

5) EVALUATION
Accuracy and FI-Score metrics have been used throughout
the manuscript for evaluating the results of every experiment.
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To obtain this metrics, as well as other metrics such as Preci-
sion, Recall and Support and a graphic representation of the
Confusion Matrix the following code have been used.

1 from sklearn.metrics import classification_report
print (classification_report (ytest, prediction))

-

import itertools

5 from sklearn.metrics import confusion_matrix

matrix = confusion_matrix(ytest, prediction,
labels=[0,1])

print (matrix)

9 accuracy = metrics.accuracy_score (ytest,
prediction)

11 from sklearn.metrics import
precision_recall_fscore_support
> precision, recall, fl1, _ =

precision_recall_ fscore_support (ytest,
prediction, average=None)

Listing 10. Models Evaluation

The output of the code can be seen in Figure 3 and the
Confusion Matrix in Figure 4.

Random Forest Accuracy: @.8198791872597474

precision recall fi-score  support
4] @.79 0.88 9.83 915
1 0.86 0.76 9.81 986
accuracy 0.82 1821
macro avg 0.82 9.82 0.82 1821
weighted avg 0.82 9.82 09.82 1821
FIGURE 3. Best model metrics.
Confusion matrix
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FIGURE 4. Best model Confusion Matrix.
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