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Abstract 

The large, and increasing, number of chemical compounds poses challenges to the exploration of such datasets. In 
this work, we propose the usage of recommender systems to identify compounds of interest to scientific researchers. 
Our approach consists of a hybrid recommender model suitable for implicit feedback datasets and focused on retriev-
ing a ranked list according to the relevance of the items. The model integrates collaborative-filtering algorithms for 
implicit feedback (Alternating Least Squares and Bayesian Personalized Ranking) and a new content-based algorithm, 
using the semantic similarity between the chemical compounds in the ChEBI ontology. The algorithms were assessed 
on an implicit dataset of chemical compounds, CheRM-20, with more than 16.000 items (chemical compounds). The 
hybrid model was able to improve the results of the collaborative-filtering algorithms, by more than ten percentage 
points in most of the assessed evaluation metrics.
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Introduction
Chemical entities/compounds, defined as “physical enti-
ties of interest in chemistry including molecular entities, 
parts thereof, and chemical substance” [1], are growing 
in number and complexity, generating large datasets, 
challenging for the researchers to explore deeply. Rec-
ommender systems (RS) may be a feasible solution for 
this challenge by identifying new entities to explore, for 
example, by suggesting entities not yet studied by the 
researchers based on their past investigation projects. 
However, the recommendation of chemical compounds 
of interest has not been widely explored [2, 3]. One chal-
lenge to include RS in compound databases is the lack of 
available datasets with the preferences of the research-
ers about the chemical compounds for assessing the RS. 
For example, it is not easy to explicitly know if a specific 
researcher had interest in the study of a chemical or 
not. More recently, alternatives have emerged with the 

development of datasets consisting of data collected from 
implicit feedback [4, 5]. These datasets do not contain 
the explicit interests of the users, as other famous data-
sets, such as Movielens [6]. Instead, this information is 
extracted from their activities, mostly from the scientific 
literature, which remains the main method for dissemi-
nating scientific work.

Datasets of explicit or implicit feedback require differ-
ent recommender algorithms, especially because implicit 
feedback has significant downgrades, such as the lack of 
negative feedback and unbalanced ratio of positive vs. 
unobserved ratings [7, 8]. When dealing with implicit 
feedback datasets, the solution involves applying learn-
ing to rank (LtR) approaches. LtR consists in, given a set 
of items, identify in which order they should be recom-
mended [9].

In RS, the main approaches are Collaborative-Filtering 
(CF) and Content-Based (CB) [10]. CF uses the similarity 
between the ratings of the users, and CB uses the simi-
larity between the features of the items. CF is divided 
into two methods, memory-based and model-based [11]. 
Memory-based methods deal with the recommendation 
problem by finding the most similar users based on the 
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ratings of the items. If two users tend to rate the same 
items in the same way, they will probably like the items 
seen by each other. Model-based methods use machine 
learning and data mining for predicting the ratings or 
for assigning a score to each item by filling the rating 
matrix blank spaces (unknown ratings). One of the most 
used methods is matrix factorization since it leverages all 
row and column correlations in one shot to estimate the 
entire data matrix [12]. With model-based methods, it is 
more difficult to explain the recommendations.

CF approaches cannot deal with new items or new 
users in the system, i.e., items and users without ratings 
(cold start problem). CB does not suffer from the cold 
start problem for new items since this approach only 
needs the features that characterize them to compare 
with the features of the items that the user already saw 
or liked. Thus, even if the new item does not have a single 
rating in the entire dataset, it may still be recommended. 
However, CB needs a list of features for the items, which 
varies from field to field. To deal with CF and CB chal-
lenges, we can develop hybrid RS, which are the assem-
bling of CF and CB. One of the most common forms of 
creating hybrids is by a weighted technique, where the 
scores of the different algorithms are combined into a 
unique final score [13].

One of the challenges of CB approaches is related to 
which features to use for finding similar items. Some 
items have obvious features. For example, when our items 
are movies, the features used to find similar items may be 
the genre, director, and authors. In other fields, the task 
of finding features for the items is not that obvious. Thus, 
one of the tools used by CB for this purpose are ontolo-
gies [14], which provide controlled vocabularies of terms 
and definitions to represent the entities of a specific field 
of study [15, 16].

The notion of ontology is not new and has long been 
used for classifying and describing concepts. At the time 
of the rising of the semantic web, ontologies were adapted 
to computational reasoning and knowledge sharing since 
their structured format (triplets of subject, predicate 
and object) makes them ideal for computer processing. 
More recently, ontologies were adapted to the biological/
biomedical domain. Some examples of well-known bio-
ontologies are the Chemical Entities of Biological Inter-
est (ChEBI) [17, 18], the Gene Ontology (GO) [19, 20], 
and the Disease Ontology (DO) [21, 22]. Bio-ontologies 
are particularly important for providing a unique iden-
tifier for biomedical entities. The name of biomedical 
entities may change over time, and different researchers 
may refer to them differently. One of the advantages of 
the ontologies is storing lists of these descriptors. Con-
sidering, for example, the chemical entity caffeine [23]. 
This entity is identified in the ontology with the primary 

name caffeine, primary ID CHEBI:27732 and it has an 
extended list of synonyms:

• 1,3,7-Trimethyl-2,6-dioxopurine
• 1,3,7-Trimethylpurine-2,6-dione
• 1,3,7-Trimethylxanthine
• 1,3,7-Trimethylxanthine
• 1-Methyltheobromine
• 3,7-Dihydro-1,3,7-trimethyl-1H-purin-2,6-dion
• 7-Methyltheophylline
• Anhydrous caffeine
• Cafeín
• Caféine
• CAFFEINE
• Caffeine
• Caffeine
• Coffein
• Guaranine
• Koffein
• Mateína
• Methyltheobromine
• Teína
• Thein
• Theine

Thus, when a researcher is interested in scientific articles 
about Koffein, we can use the ontology for identifying 
all its synonyms and retrieve all the articles that men-
tion them instead of just limiting the search to the given 
descriptor. Another significant advantage of the ontolo-
gies is that we can relate the entities through their seman-
tic similarity, a measure based on the ontology’s semantic 
structure. Figure  1 shows the knowledge graph adapted 
from ChEBI for the chemical compound caffeine. As we 
can see in the graph, the relations are defined based on 
the semantics of the entities, for example, caffeine is a 
purine alkaloid. We can use these relations to calculate 
how much two entities are semantically similar, for exam-
ple, considering their common ancestors.

Several works have used the semantic similarity 
between the entities of an ontology. In Ferreira and Couto 
[24], the authors developed a hybrid method for classify-
ing chemical compounds based on structural and seman-
tic similarity. This work concluded that using semantic 
similarity improves the classification of the chemical 
compounds and the best results were obtained when the 
weight of semantic similarity was higher than two thirds 
(71%) and the weight of the structural similarity less than 
one third (29%). More recently, Wang et al. [25] used the 
structural similarity and the ChEBI semantic similarity 
assembled into a hybrid for predicting compounds sub-
tracts suitable for membrane transporters. Other stud-
ies used the semantic similarity of ChEBI entities for 
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recognition and confirmation of chemical compounds 
found in research documents [26, 27]. In our work, we 
propose using the ontologies as a source of features that 
characterize the scientific items to find similar items for 
recommendation.

The field of RS is broad, and its approaches are applied 
to several domains, such as movies [28], books [29], 
and e-commerce [30]. In the Chemistry domain, RS 
have been generally used in studies related to drugs, for 
example, for new drugs design [31], and for finding can-
didate drugs for diseases [32]. Boström et  al. [31] used 
RS for recommending reagents for new drugs, based on 

the experience of other chemists. The dataset used in 
this study, despite interesting, is not available. Hao et al. 
[32] applied RS techniques for recommending targets to 
drugs. The datasets used has the format of target-drug 
pairs, but it does not contain any information about the 
researcher choices. Most recently, Sosnina et al. [33] used 
RS approaches to discover new antiviral drugs, extract-
ing compounds from ChEMBL [34], a database of mol-
ecules with drug-like properties. The dataset used has 
the format of compound-viral species-interaction value. 
The authors explain how the dataset was created, but 
they do not provide the dataset. Other RS applications 

Fig. 1 Knowledge graph for caffeine. Knowledge graph for the entity caffeine, adapted from ChEBI
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in Chemistry may be found in Ishihara et  al. [2], which 
describes the use of CF methods for creating possibilities 
for new chemical compounds. The dataset is not avail-
able. Seko et al. [3] uses RS techniques also for the dis-
covery of new inorganic compounds. The authors used 
the features of chemical relevant compositions to pre-
dict if a certain composition is a good candidate to inor-
ganic compound. If the system predicts a composition as 
being a new compound, it recommends this composition 
to further studies. The authors provide some additional 
material, but not the final dataset used in the RS. Once 
again, this study does not use a dataset of user, item, rat-
ing, and it does not have any information about the pref-
erences of the researchers.

None of the previous studies reported the use of ontol-
ogies, as opposed to the studies presented below, in 
which the use of ontologies enhanced the CF approaches. 
Liao et  al. [35] created a RS for recommending English 
collections of books in a library. The authors developed 
PORE, a personal ontology recommender system, which 
consists of a personal ontology for each user and then 
applying a CF method. Sieg et al. [36] also used an ontol-
ogy for creating users’ profiles for the domain of books. 
They calculated the similarity, not between the ratings of 
the users, but based on the interest scores derived from 
the ontology. Shambour and Lu [37] developed a Trust–
Semantic Fusion approach, tested on movies and Yahoo! 
datasets. Their approach incorporates semantic knowl-
edge to the items’ primary information, using knowledge 
from the ontologies.

Ostuni et  al. [38] presented a solution for the top@k 
recommendations (list of size k with the most relevant 
items for a user, predicted by the recommendation 
algorithm) specifically for implicit feedback data. The 
authors developed the Spank—semantic path-based 
ranking. They extracted path-based features of the items 
from DBpedia and used LtR algorithms to get the rank 
of the most relevant items. They tested the method on 
music and movies domains. Al-Hassan et al. [39] devel-
oped a new semantic similarity measure, the Inferential 
Ontology-based Semantic Similarity. The new measure 
improved the results of a user-based CF approach, based 
on tests on the tourism domain. Most recently, Nilashi 
et  al. [40] developed a Hybrid RS tested on the movies 
domain. The method used Single Value Decomposition 
for dimensionality reduction for the item and user-based 
CF, and ontologies for item-based semantic similarity, 
improving the CF results. They do not deal with implicit 
data.

For datasets of implicit feedback, there are two CF 
algorithms which have been particularly popular, 
Alternating Least Squares (ALS) [41] and Bayesian 

Personalized Ranking (BPR) [7]. ALS is a latent factor 
algorithm that addresses the confidence of a user-item 
pair rating, which goal is to minimize the least squares 
error of the observed ratings by factorizing the ratings 
matrix in user and item matrix. ALS has the advan-
tage of being easily parallelized. Some recent studies 
focused on speeding up the implementation of this 
algorithm [42, 43]. Another study developed a recom-
mender system for movies based on ALS using Apache 
Spark [44]. BPR is also a latent factor algorithm, but 
it is more appropriate for ranking a list of items. BPR 
does not just consider the unobserved user-item pairs 
as zeros but also discerns the preference of a user 
between an observed and an unobserved rating. Several 
studies have been using BPR in the recommendation 
of items from implicit feedback datasets. Bi et  al. [45] 
presented a deep neural network model based on Stack 
Denoising Auto-Encoder and BPR. Zhao et al. [46] pro-
posed a social distance-aware BPR model for social net-
work recommendations. Zhang et  al. [47] presented a 
solution for the recommendation of restaurants, based 
on deep learning and BPR, for multi-source datasets of 
implicit feedback.

Here we present a new hybrid semantic recommender 
model for recommending chemical compounds that 
uses semantic similarity and deals with implicit feed-
back data, of which a prototype has been presented in 
[48]. The system here presented is now capable of deal-
ing with thousands of items, and the results represent 
an improvement over top@k in several evaluation met-
rics. The hybrid model has two modules, one CF and 
one CB. The CF module addresses the implicit feedback 
datasets by applying ALS or BPR, and the CB module 
explores the semantic similarity of the chemical com-
pounds. The Hybrid model combines the outcomes of 
the CF and CB modules.

The main contributions of this work are:

• A recommender framework for recommending 
chemical compounds;

• A new CB semantic recommender algorithm 
named ONTO based on ontologies;

• A new Hybrid recommender algorithm for datasets 
of implicit feedback;

• A dataset with the semantic similarity between 
more than 16.000 chemical compounds;

• A faster semantic similarity calculation for DiShIn 
library.

The framework developed for this work, as well as all 
the data, is available at https ://githu b.com/lasig eBioT 
M/ChemR ecSys .

https://github.com/lasigeBioTM/ChemRecSys
https://github.com/lasigeBioTM/ChemRecSys
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Methods
Workflow of the proposed model
In this work we propose a Hybrid recommender model, 
featuring two modules: CF and CB. Figure  2 shows the 
general workflow of the model.

The input data used in this model, better described 
in “Experiments” section, has the format of 
<user,item,rating>. The unrated set represents the items 
we want to rank to provide the best recommendations in 
the first positions to a user. The rated set are the items 
the users already rated. Since we will split the data into 
train and test, lets call training set to the rated set and 
testing set to the unrated set. Both training and testing 
sets are the input for the CF and CB modules. Using CF 
algorithms for implicit feedback datasets, the CF module 
gives a score for each item in the test set. The CB mod-
ule uses semantic similarity for providing a score for the 
items in the test set. In the last step, the scores from CF 
and CB modules are combined and sorted in descending 
order.

For the CF module, we selected two CF recom-
mender algorithms for recommending data collected 
from implicit feedback, Alternating Least Squares (ALS) 
[41] and Bayesian Personalized Ranking (BPR) [7], both 
implemented in the library Fast python collaborative 
filtering for implicit datasets (implicit) [49]. These algo-
rithms and the implementation in the implicit library 
are suitable for the type of dataset we are using and they 

were already used with similar datasets, i.e., recommen-
dation datasets of implicit feedback, especially for rec-
ommending music playlists [50, 51]. ALS and BPR are 
used separately in the CF module. The goal is to verify 
which combination of CF(ALS or BPR)/CB achieves the 
best recommendations results. The CF module outputs a 
score, SCF , for each test item.

To the CB module, we developed a new algorithm, 
called ONTO, which is based on the semantic similarity 
between the items in the ChEBI ontology. This module 
assigns a score SCB to each item in the test set, calculat-
ing the semantic similarity between each item in the train 
and the test sets, as shown in Fig. 2. The semantic simi-
larity allows measuring how close two entities are in a 
semantic base. When using ontologies, the semantic sim-
ilarity may be measured, for example, by calculating the 
shortest path connecting the nodes of two entities. For 
calculating the similarity, we used DiShIn [52, 53], a tool 
for calculating semantic similarities between the entities 
represented by an ontology. DiShIn provides three simi-
larity measures: Resnik [54], Lin [55], and Jiang and Con-
rath (JC) [56]. All the previous measures are based on the 
information content of the entities, given by the probabil-
ity of the entity appears in the ontology, and in the shared 
information content, calculated from the common ances-
tors. Resnik and Lin are real similarity measures, whereas 
JC is a distance measure, posteriorly converted to simi-
larity. Lin and JC have a range between zero and one. The 

Fig. 2 Hybrid model. Workflow of the Hybrid semantic recommender model
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higher the value, the more similar the entities are. The 
ONTO algorithm is described in Algorithm 1.

ONTO receives as input two lists of items, train and 
test. The train data are the items we know the user 
already saw. The test data contains the items we want to 
know if suitable for recommending to a user. Thus, for 
each item in the test set, the ONTO algorithm finds the 
similarity to each item in the train set and calculates the 
mean of the similarities, as expressed by Eq. 1.

In Eq. 1, SCBI1 is the score for item 1, which is a test item, 
calculated through the ONTO algorithm, and Sim1,2 , 
Sim1,3 , Sim1,n are the semantic similarities between item 
1 and items 2, 3, …, n, respectively. 2, 3 and n are train 
items, and m is the number of train items.

Whereas the CF module uses all the ratings from the 
train set to train the model, CB module only takes into 
account the ratings of each user. ONTO algorithm does 
not use any real rating of the test items when calculat-
ing the score for each item in the test set, thus we do not 
have the problem of introducing bias in the results.

The final score for each item in the test set in the Hybrid 
model is the ensemble of the scores obtained from the 
CF algorithms, ALS or BPR, and the score obtained by 
the ONTO algorithm [13]. We used a weighted method, 
weighting the components heuristically according to two 
different metrics. Metric1 is represented in Eq.  2 and it 
multiplies the scores from CF and CB approaches. Met-
ric2 is represented in Eq. 3 and it calculates the mean of 
the scores.

SCFI1 is the score obtained for item 1, depending on the 
CF algorithm that we are using (ALS or BPR for our 
case study), and SCBI1 is the score for item 1 obtained 
with the CB algorithm. Metric2 (Eq. 3) is a more stand-
ard approach, however, Metric1 (Eq. 2) allows that items 

(1)SCBI1 =
Sim1,2 + Sim1,3 + · · · + Sim1,n

m

(2)Metric1 = SCFI1 × SCBI1

(3)Metric2 =
SCFI1 + SCBI1

2

that are really outstanding in one of the algorithms are 
recommended. Our goal is to prove that by combining 
both modules, we can improve the results of each mod-
ule separately.

Evaluation
There are several methods for evaluating the perfor-
mance of a RS, depending on the available resources and 
on the goal of the RS itself. If we have the RS running on 
a platform, such as YouTube [57] or IMDB [58], we may 
perform online tests by implementing two algorithms, 
randomly attributing them to the users, and measur-
ing the recommendations’ clicking rate. However, in 
most cases, we have only access to offline datasets, i.e., 
datasets with the past information of the users’ prefer-
ences. Despite the disadvantage of not having access to 
the users’ immediate preferences, using offline datasets 
give us the chance to test and evaluate new recommen-
dation algorithms without the extra work of developing 
an online platform and interacting with real users. Also, 
testing the algorithms offline gives us an indication of the 
best algorithm to be posteriorly implemented in online 
platforms. Thus, offline evaluation requires a dataset with 
the users’ preferences for splitting into train and test sets. 
The goal is to predict the best items for each user and 
then use the test set for confirming if the recommended 
items are relevant for the user [59, 60].

Depending on the goal of the algorithm, the type of 
evaluation will be different. There are algorithms whose 
goal is to predict the rating a user would give to an item, 
and other whose goal is to recommend a ranked list of 
items, i.e., the top@k items, where k is the size of the 
list. In the first case, these algorithms are evaluated for 
the predicted rating, using metrics such as Root Mean 
Squared Error (RMSE). RMSE measures the differences 
between the real rating of an item, and the rating pre-
dicted by a recommender algorithm, for all n items being 
analyzed.

In the second case, when the algorithms return a 
ranked list of items, these may be evaluated for the 
number of relevant items recommended, for example, 
through Precision (Eq. 4), Recall (Eq. 5), and F-Measure 
(Eq. 6), and for the quality of the ranking, through Mean 
Reciprocal Rank (Eq.  7) and Normalized Discounted 
Cumulative Gain (Eq. 9).

(4)Precision@k =
relevant_items@k

k

(5)Recall@k =
relevant_items@k

total_relevant_items
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Precision@k provides a measure of the relevant items 
recommended in the top@k list, recall@k the number 
of relevant items recommended in the top@k list, and 
f-measure provides an harmonic mean of precision and 
recall. The MRR evaluates in which position the first rel-
evant item appears. The nDCG is an evaluation method 
which compares the ideal ranking of a test set (iDCG), 
with the ranking assigned by the recommendation algo-
rithm (DCG—Eq. 8) [60].

Another important issue in the evaluation of a RS is the 
splitting method used for dividing the dataset into train-
ing and testing set. The most used methods are hold-out 
and cross-validation. In the hold-out method, the dataset 
is divided into α% for training and 1− α% for testing. In 
the cross-validation method, the dataset is divided into 
q equal sets, and in each evaluation, we use q − 1 sets 
as training data and 1 set as testing data. Each evalua-
tion has different sets of the dataset, ensuring that all the 
dataset is tested, and avoiding over-fitting. This method 
does not require a validation set [61]. The validation set 
is only required when cross-validation is used simulta-
neously for selection of the best set of hyperparameters 
and for error estimation [62], which is not our case and 
of many other related works on recommender systems [7, 
37, 41].

Experiments
For this work, we used a preexisting dataset, called 
CheRM-20, which was created by [5, 63]. The CheRM-20 
is a recommendation dataset with the standard format of 
<user,item,rating>. According to the authors, the dataset 
was developed using a methodology called LIBRETTI, 
which allows the creation of standard recommenda-
tion datasets by using research literature for extracting 
implicit feedback for the researchers. Thus, in CheRM-
20, the users are authors from research papers, the items 
are chemical compounds, which may be linked to ChEBI 
ontology, and the ratings are the number of articles an 
author wrote about a chemical. With CheRM-20, we have 

(6)F_measure@k = 2×
Precision× Recall

Precision+ Recall

(7)MRR =
1

n_users

n_users∑

i=1

1

ranki

(8)DCG =

n∑

i=1

relevancei

log2(i + 1)

(9)nDCG =
DCG

iDCG

access to information about the researchers’ past inter-
ests for chemical compounds, which allows us to develop 
recommender algorithms for predicting which chemical 
compounds the researchers may be interested now, based 
on their past ratings and the ratings of their similar peers.

CheRM-20 has 16.437 items, 2.193 users, and 117.020 
ratings. All the users in the dataset have rated at least 
20 items, i.e., the researchers considered in this dataset 
wrote articles about at least 20 of the 16.437 chemical 
compounds, even if only one article per item. This condi-
tion imposes a minimum number of items per user and it 
serves the sole purpose of when splitting the dataset into 
train and test, both datasets have a minimum number 
of items, providing a fair evaluation. This is a recurrent 
practice in other recommendation datasets, such as Mov-
ieLens [6]. On the contrary, there is no limitation for the 
minimum number of authors rating an item, which is an 
advantage because an item with only one rating (only one 
author wrote one paper about this chemical compound) 
has still the possibility of being recommended. Since this 
dataset’s rating was collected from implicit feedback, we 
will use algorithms suitable for this kind of data, such as 
ALS and BPR.

Table 1 shows the variation of algorithms evaluated in 
this study. For CF, we tested ALS and BPR, separately. 
We tested different latent factors, achieving the best 
results for this data with 150 factors. For CB, we tested 
the ONTO algorithm, using three different similarity 
measures: Lin, Resnik, and JC. The Hybrids were devel-
oped in combinations of the CF and CB approaches, 
using the two different metrics for calculating the final 

Table 1 Variation of the algorithms evaluated

CF CB Metric Algorithm

ALS – – ALS

BPR – – BPR

– ONTO_JC – ONTO_JC

– ONTO_LIN – ONTO_LIN

– ONTO_RESNIK – ONTO_RESNIK

ALS ONTO_JC Metric1 ALS_ONTO_JC_m1

ALS ONTO_JC Metric2 ALS_ONTO_JC_m2

ALS ONTO_LIN Metric1 ALS_ONTO_LIN_m1

ALS ONTO_LIN Metric2 ALS_ONTO_LIN_m2

ALS ONTO_RESNIK Metric1 ALS_ONTO_RESNIK_m1

ALS ONTO_RESNIK Metric2 ALS_ONTO_RESNIK_m2

BPR ONTO_JC Metric1 BPR_ONTO_JC_m1

BPR ONTO_JC Metric2 BPR_ONTO_JC_m2

BPR ONTO_LIN Metric1 BPR_ONTO_LIN_m1

BPR ONTO_LIN Metric2 BPR_ONTO_LIN_m2

BPR ONTO_RESNIK Metric1 BPR_ONTO_RESNIK_m1

BPR ONTO_RESNIK Metric2 BPR_ONTO_RESNIK_m2
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score of each item in the test set, Metric1—Eq.  2 and 
Metric2—Eq. 3.

We used offline methods for evaluating the perfor-
mance of the algorithms for the top@k, with k varying 
between 0 and 20, with steps of 1 [59]. From the vast 
range of metrics for evaluating recommender algo-
rithms, we selected classification accuracy metrics and 
rank accuracy metrics, since they allow us to evaluate the 
algorithms for the relevant and irrelevant items recom-
mended in a ranked list, and for the ability of an algo-
rithm to recommend the items in the correct order. We 
use Precision, Recall (classification accuracy metrics), 
MRR, and nDCG (rank accuracy metrics) for this study. 
All the selected evaluation metrics range between 0 and 
1, with values closest to 1 better. For the segmentation 
of the dataset into training and testing sets, we used a 5 
cross-validation approach, by splitting users and items 
into fivefolds. In each iteration we draw 20% of the users 
and 20% of the items as test data, and 80% as train data. 
We did not use a validation set, since it is not required 
when using a cross-validation approach. This split and 
evaluation method is used in several recommender sys-
tem studies [7, 37, 41].

All the positive ratings in the test set are considered 
relevant items for the user, i.e., an item with a rating of 5 
is not more relevant than an item with a rating of 1. If an 
author wrote one paper about one chemical compound, 
we consider this chemical relevant for the author. We 
considered the unrated items as negative ratings, i.e., not 
relevant for the users. For the ONTO algorithm, we also 
assessed how using the n most similar items affects the 
results, with n varying from 1, 5, 10, 15, 20, 25, 30, and all 
of the items.

The semantic similarity between the chemical com-
pounds was calculated offline, using the DiShIn. Despite 
DiShIn robustness, the framework was not fit for a large 
number of items. Thus, we implemented a new func-
tionality, Light DiShIn, which allowed us to speedup 
the calculation of the similarities and the feasibility of 
the ONTO algorithm. Light DiShIn was implemented 
based on Pandas [64], which is a python Framework for 
manipulating datasets, and the use of multiprocessing, 
introducing the use of multiple cores for processing the 
similarities. Table  2 and Fig.  3 show the results of the 
speedup in latency (Eq.  10 [65]) of Light DiShIn when 
compared with the original DiShIn. The number of simi-
larities calculated (n similarities) is 1, 30, 60 and 180, and 
both systems calculated Resnik, Lin, and JC similarity 
metrics.

(10)SpeedupLatency =
Latency1

Latency2

According to the results, for calculating the similar-
ity between two entities (n similarities = 1), the original 
DiShIn is faster. Though, when increasing the number of 
entities and the number of similarities for calculation, 
the Light DiShIn is much faster than the original DiShIn, 
whose calculation time seems to be exponential. In our 
tests, the speedup latency from original DishIn to Light 
DiShIn achieves values of 50 times faster. For calculating 
the 131.538.810 similarities between the entities used for 
this work, we estimated that the original DiShIn would 
take 3.2 years. The similarities for 16.437 chemical com-
pounds, 131.538.810 similarities, were calculated in less 
than a week and stored into a mySQL database for the 
measures Lin, Resnik and JC. This database is used by 
the ONTO algorithm for faster retrieving the semantic 
similarities of all items in the test and in the train sets. 
The introduction of Light DiShIn allows the viability of 
the execution of the ONTO algorithm, described in 
Algorithm 1.

Results and discussion
We present the results of this study in Figs. 4, 5, 6, and 7 
for Precision, Recall, MRR, and nDCG, respectively, 
through the form of heat-maps, for all the algorithms in 
Table 1. The heat-maps show the results from top@1 to 
top@20, obtained using the five most similar items when 

Table 2 Evaluation of  the  speedup latency from  original 
DishIn to Light DiShIn

The latency is measured in seconds and n similarities is the number of 
similarities calculated in each iteration of the test

n similarities Original DiShIn Light DiShIn Speed up

1 0.77 1.66 0.46

30 20.36 1.79 11.34

60 41.43 1.83 22.59

90 62.72 2.07 30.22

180 121.72 2.39 50.82

Fig. 3 Light DiShIn speedup. Speedup of Light DiShIn with respect 
to the Original DiShIn
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Fig. 4 Precision results from top@1 to top@20, for ALS, BPR, ONTO and the Hybrids obtained using the 5 most similar items when calculating the 
scores for the ONTO algorithms

Fig. 5 Recall results from top@1 to top@20, for ALS, BPR, ONTO and the Hybrids obtained using the 5 most similar items when calculating the 
scores for the ONTO algorithms
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Fig. 6 MRR results from top@1 to top@20, for ALS, BPR, ONTO and the Hybrids obtained using the 5 most similar items when calculating the scores 
for the ONTO algorithms

Fig. 7 nDCG results from top@1 to top@20, for ALS, BPR, ONTO and the Hybrids obtained using the 5 most similar items when calculating the 
scores for the ONTO algorithms
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calculating the scores for the ONTO algorithm, since 
these were the best results obtained. Following the heat-
map, the more purple, the better the results. The Hybrids, 
both with ALS and BPR, achieved the best values for all 
the represented metrics. The best precision was obtained 
with ALS-ONTO-LIN-m2 (0.63—top@1), improving 
ALS results by seven percentage points. The best recall 
was obtained with ALS-ONTO-JC-m2 (0.55—top@20), 
improving ALS results by six percentage points.

BPR had lower results than ALS for all the evaluated 
metrics. However, when combining BPR with ONTO, 
the improvement is more significant from BPR to BPR-
ONTO than from ALS to ALS-ONTO. Precision had 
an improvement of 13 percentage points, and recall had 
an improvement of six percentage points. From these 
results, we may conclude that the combination of ALS 
with ONTO achieves the highest results, but the hybrids 
with BPR undergo more significant increases when com-
pared to BPR alone. These results of precision and recall 
show that the Hybrid algorithms are including more rel-
evant items in the list of recommendations.

Looking at the ranking quality metrics MRR and nDCG 
in Figs.  6 and  7, ALS-ONTO-LIN-m2 obtains the best 
MRR (0.68—top@15), with a growth of seven percentage 
points from ALS to ALS-ONTO-LIN-m2. ALS-ONTO-
JC-m2 have the best nDCG (0.70—top@9,10,11), more 
seven percentage points than ALS. For BPR, the increase 
was 14 percentage points for MRR and 13 percentage 
points for nDCG. These results of MRR and nDCG indi-
cate that the Hybrid algorithms are effective in rearrang-
ing the ranked list of recommendations.

Analysing Figs.  4,  5,  6 and 7, the ONTO algorithms 
alone have the lowest results in all evaluation met-
rics. Nevertheless, they follow the trend of the other 
algorithms, and when measuring these metrics for the 
top@20, the results are similar. ONTO has the advan-
tage of being a CB algorithm; consequently, it does not 
have the problem of cold start for new items. ALS and 
BPR cannot be used if the item in the test set is not in the 
train set at least once (at least one author in the train set 
wrote about this chemical compound). However, ONTO 
algorithm requires the existence of all the entities in an 
ontology. In this case, the chemical compounds must be 
represented in ChEBI. When applying the ONTO algo-
rithm to a database which does not have the ChEBI ID 
for the entities, we may use Named Entity Linking meth-
ods, such as the Relation Extraction for Entity Linking 
(REEL) [66], which links entities recognized in the litera-
ture to the ChEBI ontology.

ONTO-LIN and ONTO-RESNIK achieved almost the 
same results; however, the Hybrids created with the two 
metrics have quiet different results. The Hybrids with 
ALS created through Metric1 (Eq.  2) achieved similar 

results for both ONTO-LIN and ONTO-RESNIK. For 
Metric2, the Hybrids with ONTO-LIN are better (Eq. 3). 
The ranges of the scores may explain this. Whereas LIN 
has a range between 0 and 1, and ALS is also returning 
scores inferior to 1, the same is not true for ONTO-
RESNIK, since the Resnik similarity metric has an infinite 
upper limit. Thus, when using Metric2 for calculating the 
final score for an item, the scores from ONTO-RESNIK 
have a much greater influence on the mean of the scores 
than the ones from ALS (<1).

For BPR, we verified that the Hybrid with ONTO-
RESNIK with Metric1 achieved similar results to the ones 
obtained with ONTO-LIN. With Metric2, the Hybrid 
with ONTO-RESNIK is better than with ONTO-LIN. 
Due to BPR’s particularity, which always increments 1 to 
the scores, all scores for the items from this algorithm are 
higher than one. Between ALS and BPR, ALS achieved 
the best results. Since BPR is an algorithm for ranking, it 
was expected to obtain better results. We believe this is 
because the dataset has a large number of ratings equal 
to one, and many items have the same relevance (difficult 
to rank).

We will now see how the number n of most similar 
items is also influencing the results of the ONTO algo-
rithm, as well as the results for the Hybrids. Figure  8 
shows the variation in the Precision@1, Recall@20, 
MRR@20 and nDCG@20 with different n most simi-
lar items in the ONTO-RESNIK algorithm and for 
the Hybrids ALS-ONTO-RESNIK-m1, ALS-ONTO-
RESNIK-m2, BPR-ONTO-RESNIK-m1, and 
BPR-ONTO-RESNIK-m2. ALS and BPR are also repre-
sented for better visualization of the improvement of the 
Hybrids. The small variations of ALS and BPR along the 
y axis are due to the stochastic nature of the evaluation 
methods.

Following Fig.  8, the best results for ONTO-RESNIK 
in all the evaluation metrics are achieved using the five 
most similar items for calculating the scores of the items 
in the test set. Using a higher n, the quality metrics 
decrease for all the evaluation metrics. These results also 
affect the Hybrid algorithms, lowering the quality met-
rics with the increase of n. ALS-ONTO-RESNIK-m1 is 
the best for all evaluation metrics. Looking at the plots 
in Fig. 8, we can notice a slightly descendent curve with 
the increase of the n most similar items. For example, 
the value for MRR@20 for ALS-ONTO-RESNIK-m2 is 
0.6484 for n = 5 and 0.6460 for n = 10. This small differ-
ence may be because ALS has a much stronger influence 
on the final score than ONTO-RESNIK. As previously 
noticed, ALS-ONTO-RESNIK-m2 suffers a decrease 
when compared with ALS. This is justified by the differ-
ent ranges of the scores for each algorithm, visibly affect-
ing ALS-ONTO-RESNIK-m2 by the variation of n. BPR 
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follows the trend of ALS results, with the difference that 
BPR-ONTO-RESNIK-m2 generally achieved best results 
than BPR-ONTO-RESNIK-m1.

The results for the variation of the algorithms with the 
n most similar items for LIN and JC metrics are repre-
sented in Figs. 9 and 10, respectively. The analysis of the 
plots suggests the same behavior as the one for Resnik 
metric, i.e., the best results are achieved with n = 5, and 
they degrade with the increase of n.

The following example presented in Table  3 shows 
the influence of the ONTO-RESNIK algorithm in the 
order of the items in the ranked list of recommenda-
tions. The Table shows the top@20 recommended 
items with the algorithms ONTO-RESNIK, ALS, BPR, 
ALS-ONTO-RESNIK-m1 ALS-ONTO-RESNIK-m2, 
BPR-ONTO-RESNIK-m1 and BPR-ONTO-RESNIK-
m2, for a user with ID 174228. This user has 4 relevant 
items in the test set, (ChEBI ID/name: 85291 (N,1,2-
trioleoyl-sn-glycero-3- phosphoethanolamine (1-)), 
85292 (N-stearoyl-1,2-dioleoyl-sn-glycero-3- phosphoe-
thanolamine (1-)), 137008 (N-acyl-1-[(1Z)-alkenyl]-
sn-glycero-3- phosphoethanolamine (1-)) and 140452 

(1-[(1Z)-octadecenyl]-2-oleoyl-sn-glycero-3-phosphate 
(2)) i.e., items in the test set with a rating higher than 
zero. The relevant items recommended by each algo-
rithm are represented in Italic cells. Additional info for all 
the chemical compounds mentioned in this text may be 
found in Additional file 1.

For the example presented in Table  3, the best algo-
rithms were ALS, ALS-ONTO-RESNIK-m1, and 
BPR-ONTO-RESNIK-m2, following the trend of our 
general results presented in Figs.  4, 5,   6,  7 and 8. Fig-
ure  11 shows the results for the Precision-Recall curve 
for all the algorithms in Table 1. This Figure shows that 
ALS-ONTO-m1 achieved the best results in the recom-
mendation of the most relevant compounds.

When combining ONTO-RESNIK with ALS using the 
Metric1, the recommended items are the same, show-
ing that for this case, ALS has a stronger influence in 
the final results. When combining ONTO-RESNIK with 
ALS using the Metric2, it results in the recommenda-
tion of less relevant items in the first positions of the 
list. The Hybrid of ONTO-RESNIK and BPR using Met-
ric1 or Metric2 improves the number of relevant items 

Fig. 8 ONTO-RESNIK n variation. Variation of Precision@1, Recall@20, MRR@20 and nDCG@20 with different n most similar items in the 
ONTO-RESNIK algorithm
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recommended in the first positions for both BPR and 
ONTO-RESNIK. Based on these results, we may con-
clude that combining the ONTO algorithms with ALS 
or BPR, the most relevant items are rearranged for better 
positions in the Hybrids, improving the chances of rec-
ommending useful content for the users in the first posi-
tions of the recommendations. Thus, the results support 
our hypothesis that by using a CB algorithm based on the 
semantic similarity between the chemical compounds for 
creating Hybrids with CF algorithms, improves the rec-
ommendation of relevant items.

Considering that the size of the test set for this user 
was larger than 3000 items and the algorithms recom-
mended three of the four relevant items in the first posi-
tions, one may say that RS are a solution for identifying 
chemical compounds of interest for scientific researches 
in large lists of these entities.

When using Model-based CF methods, it is not easy 
to justify why an item is recommended. However, our 
semantic approach finds a justification for the recom-
mendations. Lets focus on Table 3, with the example for 
user 174228. The ChEBI IDs for the chemical compounds 

in the training set for this user were 134355, 137009, 
137010, 137016, 137017, 138092, 138094, 138096, 
140451, 61232, 62064, 62537, 71466, 78097, 78940, 85277, 
85293, 85294, 85295, 85296, 85297, 85298, 85299, 85301, 
85302, 85303, 85304, 85334 and 85335. The ONTO algo-
rithm finds the semantic similarity between each item in 
the testing set (more than 3.000 items) and these items in 
the training set. The score for each item in the testing set 
is the mean of the similarity values. Thereby, for exam-
ple, for item 85291, the score of ONTO-RESNIK is 4.67, 
being this the higher score for all 3.000 items in the test 
set. Interestingly, the score for item 85292 is also 4.67, 
which is justified by the fact that both items 85291 and 
85292 are descendants of the item 62537, and share the 
same amount of common ancestors. This means that the 
items 85291 and 85292 share the most similarity with the 
items that we already know the user liked.

From a semantic and chemical point of view, both 
85291 and 85292 are children of Organophosphate 
oxoanion (58945), which is an organic phosphoric acid, as 
well as a large number of compounds in the training set 
of this user—62537, 78097, 85277, 85293, 85294, 85295, 

Fig. 9 ONTO-LIN n variation. Variation of Precision@1, Recall@20, MRR@20 and nDCG@20 with different n most similar items in the ONTO-LIN 
algorithm
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85296, 85297, 85298 and 85334. Thus, it makes sense that 
both are recommended to this user, and by the test set, 
these are true positives, because we know the user had 
interest in these compounds. Another large group of 
items in the training set of this user are Bronsted bases 
(molecular entity capable of accepting a hydron from a 
donor)—71466, 85299, 85301, 85302, 85303, 85304. The 
compound recommended by the ONTO algorithm in 
the third position (85175) is also a Bronsted base, thus, 
highly similar to these items in the training set. However, 
this compound is a false positive from the evaluation 
point of view, i.e., we don’t know if the user already had 
interest in this compound. Nevertheless, and based on 
the training set, if we recommend this item to the user, 
she/he will probably have interest in its study. This analy-
sis is not possible for the CF algorithms. However, with 
the hybrids, we can also relate the items semantically and 
guide the user to study new compounds. For example, 
ALS-ONTO-m1 recommends in the fourth position the 
item 17697 (N-acetylserotonin). Despite this compound 
not being in the list of relevant items for this user, it is 
semantically similar to 85299 and 71466, which are from 

the group of Bronsted bases, and may be useful for this 
user research.

The only item in the list of relevant items which is not 
recommended by any algorithm is the 137008 (false neg-
ative). The reason this happens in the CF algorithms is 
because this item has a low number of users associated 
to it (3 users had interest in this item, the mean is 7 users 
by item). The ONTO algorithm is not able to retrieve this 
item in the list of recommendations due to a limitation of 
the DiShIn. The ID 137008 is a secondary ID for the com-
pound 140403 (name: N-acyl-1-[(1Z)-alkenyl]-sn-glyc-
ero-3-phosphoethanolamine(1-)) and DiShIn is not able 
to calculate the similarity for the secondary IDs because 
it only works with primary IDs.

Table 4 presents another example of recommendation 
using the ONTO-RESNIK algorithm, for the user 33142. 
In this example, we show the relevant items recom-
mended and the relevant items not recommended in the 
top@20 list.

The relevant items recommended (77367, 77380, 
84078, 84082) have a high semantic similarity with the 
items in the training set of this user. All the four are 

Fig. 10 ONTO-JC n variation. Variation of Precision@1, Recall@20, MRR@20 and nDCG@20 with different n most similar items in the ONTO-JC 
algorithm
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Table 3 Influence of the ONTO-RESNIK algorithm in the top@20 list of recommendations for user 174228

This user has as relevant items the following ChEBI IDs: 85291, 85292, 137008 and 140452. Underlined cells represent the relevant items recommended by each 
algorithm

ONTO-RESNIK ALS BPR ALS-ONTO-m1 ALS-ONTO-m2 BPR-ONTO-m1 BPR-ONTO-m2

85291 85292 23527 85292 85292 85292 85292

85292 85291 87818 85291 85291 85291 85291

85175 140452 72719 140452 85175 69120 140452

119 27847 6610 17697 119 140452 119

271436 175901 52347 5769 2904 137350 271436

2904 49668 72715 65495 271436 140243 6438

132187 87837 72754 27847 132187 132325 79079

79079 5769 69120 137411 79079 128770 132187

6438 17606 85292 49668 6438 69121 2904

140452 60453 140443 90983 140452 41214 69120

87764 87839 69340 132795 132725 82669 85175

132738 60747 132325 60999 132738 5635 137350

132725 76108 64499 30659 87764 63919 140243

65778 76097 140191 138802 78884 68249 128770

78884 60999 41214 138806 65778 69110 65778

76952 30659 91001 66917 141568 74912 69121

16108 31718 91000 37998 73275 140182 63919

77692 138802 133759 28850 138274 68236 69110

16125 138806 85291 66756 76952 130073 140182

31623 90983 67448 66755 16108 66394 130073

Fig. 11 Precision-Recall curve. Precision-Recall curve for the algorithms ONTO-RESNIK, ALS, BPR, ALS-ONTO-m1, ALS-ONTO-m2, BPR-ONTO-m1, and 
BPR-ONTO-m2
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structural derivatives of oligosaccharide and carbohy-
drate. In the list of relevant items not recommended, 
we also have an item with these characteristics (77629); 
however, the score of this item is lower than the score of 
the last recommended item in the top@20, and that why 
it is not recommended. The other two items (59484 and 
134230) do not share high semantic similarity with the 
train, explaining why they are not recommended.

Considering the results, the hybrid semantic recom-
mender system presented in this work is suitable for the 
recommendation of chemical compounds of interest for 
researchers dealing with large scale datasets. The use of 
a hybrid approach not only improved the results of the 
individual module, but also provides recommendations 
of chemical compounds based on the interests of similar 
peers (CF) and being able of justifying the recommenda-
tion (CB).

The model described in this paper may also be applied 
to other databases in which it is possible to measure the 
semantic similarity between the entities. Consider the 
DrugBank [67], a major database of drugs, largely used in 
the pharmaceutical field. DrugBank, similarly to ChEBI, 
has chemical compounds, such as Acetaminophen. It 

provides detailed information about the chemicals, about 
their identification, pharmacology, or interactions, for 
example. It is also created in a hierarchical format, hav-
ing a Chemical Taxonomy, which provides information 
such as Super Class, Class, Sub Class, and Direct Par-
ent. This structure allows the calculation of semantic 
similarity between the chemicals, as shown in [68]. The 
ONTO algorithm can then be applied using these simi-
larity measures for providing the recommendation, and 
combine it with other recommender algorithms such as 
ALS or BPR.

Conclusion
A major challenge in the identification of new chemical 
compounds is the increasing number of entities added 
to repositories. In this work, we presented a solution to 
this problem in the form of a recommender system. Our 
approach consists of a Hybrid recommender model for 
recommending ranked lists of chemical compounds. The 
Hybrid model has two modules, one using a CF approach 
and the other a CB approach. In the CF module, we used 
ALS or BPR, specific algorithms for implicit feedback 
datasets. The CB module consists of a new algorithm 
called ONTO, based on the semantic similarity of the 
chemical compounds in ChEBI ontology. The hypothesis 
presented was that by combining the scores obtained by 
each module, we would improve the results of both mod-
ules separately. The Hybrids between ALS and ONTO 
were the ones with the best results for all the evaluation 
metrics, improving the results by more than ten percent-
age points. The obtained results support our hypothesis 
since the results for the Hybrids algorithms are higher 
when compared with the individual algorithms. Even 
though ALS and BPR are better than the ONTO ver-
sions of the CB approach, when combined, the ONTO 
algorithm rearranges the positions of the items, recom-
mending more relevant items in the first positions of the 
rank. Thus, with this work, we contributed with a recom-
mender framework for chemical compounds, a new CB 
semantic recommender algorithm based on ontologies, 
a new Hybrid recommender algorithm for datasets of 
implicit feedback, a dataset with the semantic similar-
ity between more than 16.000 chemical compounds, 
and also a faster method for calculating the similarities 
between large numbers of entities. We believe that this 
work is suitable for other fields of study, thereby, for 
future work, we intend to assess the ONTO algorithm, 
as well as the Hybrids, with entities from other ontolo-
gies, such as GO and DO. We would like to improve the 
results for precision and recall, for example by perform-
ing Named entity recognition in the articles from where 
the CheRM-20 dataset was created, to have more items 
related to each user. Other hypotheses are testing other 

Table 4 Results of ONTO-RESNIK for the user 33142

The table presents the training items for this user, the relevant items in the 
testing set, the scores of these items calculated using the ONTO-RESNIK 
algorithm and the top@20 recommendations, and respective scores. Underlined 
are the relevant items which were recommended (77367, 77380, 84078, 84082) 
and in Bolditalic the relevant items which were not recommended in the top@20 
(59484, 77629, 134230)

Training Relevant Score Top@20 Score

60561 59484 2.18 134258 7.59

62642 77367 6.82 61755 7.59

62664 77380 6.74 84082 7.59

62996 77629 6.60 84078 7.59

62997 84078 7.59 59949 7.48

62998 84082 7.59 90930 7.29

77314 134230 4.33 66139 7.29

77374 60381 6.87

77378 77367 6.82

77381 90775 6.82

77382 77380 6.74

77384 62471 6.65

77385 61847 6.65

77598 87452 6.65

77613 87799 6.65

77625 61713 6.65

77626 61329 6.65

77627 61334 6.65

77628 62534 6.65

84081 67164 6.65

84084
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similarity metrics, and using the relations between the 
compounds to provide the recommendations.
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