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Today, recommender systems play a vital role in the acceleration of searches by internet users to find what they
are interested in. Among the strategies proposed for recommender systems, collaborative filtering has received
due attention regarding its simplicity and efficiency. The key factor for the success of this strategy returns to the
similarity calculation methods that affect the accuracy of its recommendations. Regarding the large volume of
articles published in the field of collaborative filtering for the development of recommender systems, it is
necessary to provide a comprehensive review of the similarity functions and their efficiency presented in the
field. Of course, several surveys have already been published to investigate the similarity functions proposed for
collaborative filtering, but these articles either have looked briefly at these functions or reviewed a few numbers
of them. In this study, the effort was to provide a comprehensive study on the similarity functions proposed for
collaborative filtering with a special focus on the rating-based and neighbor-based approaches. After a brief
explanation of each similarity function, some popular evaluation metrics were used for their evaluation using the
MovieLens datasets. The comparative evaluation results presented in this article provide a highly useful reference

for researchers in this field to choose their appropriate similarity function.

1. Introduction

Nowadays, with the explosive growth in the volume of information
available via internet resources, people spend a lot of time to search and
find their interested items. This has formed the forthcoming challenge of
information overload which hampers internet users to access their
appropriate items timely. Recommender systems have been proposed to
deal with the problem of information overload through filtering unfa-
vorable items and suggesting items according to user’s preferences, in-
terest, or observed behavior (Yan & Tang, 2019). These suggestions are
created through monitoring or examining the behavior of users to
choose items based on their preferences.

Among different strategies developed for recommender systems,
collaborative filtering is the class of the most famous, successful (Saeed,
2017; Ahmadian, 2017; Huang, Yu, & Wang, 2018; Wang, Deng, Gao, &
Zhang, 2017) and widely used algorithms (Yan & Tang, 2019). This
popularity is due to its simplicity and efficiency in the recommendation
of items based on the user’s interests. The methods assume that the
future behavior of each user is more likely to his/her past behavior.
Suggestions that this type of recommender systems provide to an active
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user are based on the previous ratings by this active user and other
similar users, and there is no additional information about the items and
users (Chen et al., 2018).

The methods within the collaborative filtering approach are gener-
ally divided into neighborhood-based and model-based (Kluver,
Ekstrand, & Konstan, 2018). This classification was first proposed in
1998 by Breese, Heckerman, and Kadie (1998). Based on definition, the
model-based methods mostly attempt to model the system using the
matrix factorization while the neighborhood-based methods work as an
extension of the K-Nearest Neighbor (KNN) classifiers. These algorithms
are based on the fact that similar users have the same rating patterns and
similar items receive the same rates (Aggarwal, 2016). Though the
studies for developing new algorithms are continuing, these algorithms
are still used in several active systems. These basic approaches are
generally simple and flexible as well as show a competitive performance.
As a result, they have been more popular to be employed in the devel-
opment of recommender systems (Kluver et al., 2018).

The developed nearest neighbour-based collaborative filtering al-
gorithms work based on two different strategies: rating-oriented and
ranking-oriented. The methods based on the rating-oriented strategy
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(Herlocker et al., 2002; Breese et al., 1998) use the rating information
from other similar users for pblueiction of a user’s potential ratings on
unrated items. These methods calculate the similarity between two users
through their rating scores on the commonly rated items. Unlike the
rating-oriented strategy, the ranking-oriented methods (McNee, Riedl, &
Konstan, 2006) produce a user’s preference item list directly without
using the rating information. In general, the neighborhood-based
collaborative filtering approach has become one of the most popular
methods used in recommmender systems due to their remarkable ad-
vantages including interpretability, strong robustness, and competitive
performance (Hofmann, 2004).

The sparsity challenge, along with other challenges in recommender
systems such as cold-start and scalability has led the researchers to
explore and propose several strategies for recommender systems based
on different similarity functions introducing interesting ideas. The ideas
are commonly trying to overcome the problems with recommender
systems and increase their performance (Deng et al., 2019). The key
point in designing the methods based on the collaborative filtering
approach is to calculate the similarity between users (or items) using an
efficient function. The similarity function has a direct impact on the
performance of both neighborhood-based and model-based methods
(Yan & Tang, 2019; Liu et al., 2017; Aghdam, Analoui, & Kabiri, 2015;
Aghdam, Analoui, & Kabiri, 2016). The functions are also applied in
other fields of recommender systems (Yang, Wei, Wu, Zhang, & and
Zhang, 2009; Aghdam, Analoui, & Kabiri, 2016).

Many articles have been published to review the similarity functions
designed for recommender systems, but there is no comprehensive study
to collect, investigate, and compare these functions. Recent reviews
have coveblue a few numbers of these functions, while the number of
introduced similarity functions is much more. The current study was
organized based on the belief that a comprehensive review of the
available similarity functions can assist software developers to design
more efficient models for recommender systems regarding their prop-
erties and capabilities. On the other hand, the use of these functions in
other research fields such as clustering and data mining can be extended
by this study. The purpose of this research was to investigate in detail the
different similarity functions and their related algorithms based on the
collaborative filtering approach in terms of their limitations, efficiency,
and scalability.

1.1. Prior Related Surveys

Several articles (Bobadilla, Ortega, Hernando, & Gutiérrez, 2013;
Adomavicius & Tuzhilin, 2005; Isinkaye, Folajimi, & Ojokoh, 2015;
Reddy & Govindarajulu, 2017) have been published to review the al-
gorithms proposed for recommender systems which were designed
based on different data mining, machine learning, or any other tech-
niques. These articles have a brief overview of the available algorithms
as well as the comparison and evaluation of their performance. The lack
of comprehensive reports may due to a large number of similarity
functions and their related algorithms making the review procedure
difficult. On the other hand, there are several review articles (Chen et al.,
2018; Cacheda, Carneiro, Fernandez, & Formoso, 2011; Su & Khosh-
goftaar, 2009; Kluver et al., 2018) with a focus on the algorithms based
on the collaborative filtering approach, whereas a few traditional sim-
ilarity functions were investigated.

In general, the performance of existing neighborhood-based algo-
rithms depends on their similarity function, which uses a rating matrix
on co-rated items. However, due to the sparsity of the rating matrix, the
methods do not obtain high accuracy. Therefore, to model a proper
recommender system, evaluation of the similarity functions can be
helpful (Stephen, Xie, & and Rai, 2017). Hence, to examine the simi-
larity functions and identifying the appropriate functions, some re-
searches have been reported (Saranya, Sadasivam, & Chandralekha,
2016; Singh, Pramanik, & Choudhury, 2019; Katpara & Vaghela, 2016;
Herlocker, Konstan, & Riedl, 2002) using different evaluation methods.
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Hassanieh, Jaoudeh, Abdo, and Demerjian (2018) examined the
behavior of several traditional similarity functions for collaborative
filtering at different volume percentages of a dataset. Arsan, Koksal, and
Bozkus (2016) believed that users’ flavors are changed during the time,
but items’ properties remain constant, and thus, they used similarity
functions on items instead of users’ choice and performed comparisons.
Spertus, Sahami, and and Buyukkokten (2005) evaluated the similarity
functions on the binary rating matrix. Among these reviewed articles,
Agarwal and Chauhan (2017) studied the largest number of similarity
functions (including 13 functions) but still their set cover a small frac-
tion of all known functions used in recommender systems. Besides,
regarding that these review articles have used different evaluation
criteria for investigation of different similarity functions, collecting their
results in a comprehensive review was not facilitated.

1.2. Our work

In this article, the effort is to collect and investigate the similarity
functions presented in the field of neighborhood-based collaborative
filtering. As far as we know, this is the first survey trying to collect all the
similarity functions in this field as much as possible and provide a
comparative evaluation of them. The functions are introduced first and
then examined on the MovieLens dataset as a standard benchmark for
evaluation of recommender systems using different evaluation metrics.
Regarding that the neighborhood-based methods use rating-oriented or
ranking-oriented strategies (Shams, 2018), they use different mecha-
nisms in applying similarity functions. It would therefore not be fair to
apply and compare their similarity functions in equal criteria. The
rating-oriented algorithms pay more attention to the numeric value of
the ratings. This is while the ranking-oriented methods have nothing to
do with these values and use the rank of that rate among the others. The
computational time of these methods are usually higher than that of the
rating-oriented methods. Furthermore, the methods come with two
pairwise and listwise views (Tsuchiya & Nobuhara, 2018; Tsuchiya &
Nobuhara, 2019). In the meantime, since the primary neighborhood-
based algorithms were rating-oriented and a large number of these al-
gorithms fall in this category, the focus in this study is on the similarity
functions of this category. However, the meaning of this focus is not to
mention that the ranking-oriented algorithms are less worthy and the
only reason was to overcome a large number of articles and the original
meaning of the neighborhood-based algorithms.

In this article, 33 similarity functions (113 with extension functions)
have been studied and tested to obtain a complete reference of similarity
functions. It has also attempted to collect all extensions for each func-
tion. The functions have been collected from available literature and
implemented to evaluate their performance. The rest of this article is
organized as follows: the second section deals with the similarity func-
tions. The third section discusses the implementation, datasets, and
evaluation criteria. The fourth section discusses the results, and the last
section concludes the study.

2. Similarity functions

In this section, the similarity functions used in neighborhood-based
collaborative filtering are described. Each function is explained in gen-
eral and the details of their formula are listed in Table 2. Besides, the
related extension of each function is introduced. In Table 1, the most
common symbols used in formulas are briefly introduced.

2.1. Pearson correlation coefficient (PCC) and its extensions

The PCC similarity function is one of the most commonly used
traditional similarity functions in the recommender systems. The simi-
larity between two users is calculated via the function based on the
linear dependence of their recorded rates.
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In the earliest definition of this function, PCC,4 (Resnick, Iacovou,
Suchak, Bergstrom, & and Riedl, 1994), R, is obtained from the recorded
rates by the user u on the set of co-rated items. However, because of the
large number of users and items in recommender systems, its calculation
is time-consuming, and thus, a modified definition of the Pearson func-
tion is used mostly in related literature. In this definition, PCC,,, the
value of R, is computed using all recorded ratings by the user u
(Aggarwal, 2016). In almost all related literature, this new definition of
Pearson has been used.

It is clear from the formula that the Pearson function is defined on co-
rated items. However, in recommender systems due to the sparsity
problem (Marinho et al., 2012), the number of co-rated items between
two users is low. Therefore, the formula may in some cases is not
computable or the obtained value is not reliable (Saranya &
Sadasivam, 2017). To overcome this limitation, many extensions of
this function have been proposed to cover its weaknesses. For
example, in the modified version of the function, WPCC proposed by
Herlocker, Konstan, Borchers, and and Riedl (1999), the similarity
obtained by Pearson’s formula is multiplied to a number smaller than
one if the number of co-rated items between two users is less than a
threshold to blueuce the value -calculated by the function.
Furthermore, the functions SPCC (Liu, Hu, Mian, Tian, & Zhu, 2014;
Saranya & Sadasivam, 2017) and ShrunkPCC (Knees, Schnitzer, & and
Flexer, 2014) use the number of co-rated items to calculate the
similarity between all pairs of users, in exponential and fractional
form, respectively.

Another modification on the Pearson function is to consider the fact
that the rate distribution in recommender systems has the long tail
property (Aggarwal, 2016; Leskovec, Rajaraman, & Ullman, 2014).
Long-tail refers to the fact that some items are more popular and rated by
many users, while some others are not popular and receive a limited
number of ratings. In overall, the impact of each rate with few rating is
much greater than that of each popular item. In this view, FPC (Aggar-
wal, 2016; Ricci, Rokach, Shapira, & Kantor, 2010) and PCCiyr (Weng,
Xu, Li, & Nayak, 2005) use the log function and the function weightedPCC
(Zhang et al., 2017) uses the exponential function to obtain a value for

PCC(u,v) = €Y}

Table 1

The description of symbols used in the paper
Symbol Description
R Rating Matrix
Items set of all items
Users set of all users
|Users| = n total number of all users
[Items| = m total number of all items
u,v,w any user in the system
i,j any item in the system
U; set of all users that have rated the item i
I, set of all items that have rated by user u
I,NI, set of co-rated items of two users u and v
Ry the submitted rate for item i by user u
Ruin, Riax, RNG, in the possible values for a rating, these are minimum rate,

Rined maximum rate, maximum-minimum rate, and the median of
rates

R; the average rating of item i
Ry the average rating of user u
oy the standard deviation of rating of user u
Nbry; most similar users for user u and item i
x| if x is a set, then denotes the cardinality of the set; else if x is a

number, then is the abs function
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the impact (weight) of each rate. Additionally, the F2PC (Lathia, Hailes,
& and Capra, 2007), PCCtsim (Pan, Liu, & and Chang, 2017) and
CORprank (Lee, 2018a) functions calculate the weight of each rate in a
slightly different ways. Another modification on Pearson is the NewPCC
(Sheugh & Alizadeh, 2015) function that tries to improve Pearson by
considering the fact that in recommender systems, some cases force the
output of Pearson to be zero. This NewPCC function detects these cases
through a modified formula. The CPCC (Al-bashiri, Abdulgabber, Romli,
& Kahtan, 2018) function is one of the most famous extensions of
Pearson. It uses the median of the rates instead of the average in the
Pearson formula. The goal is to divide the ratings into two categories of
interested (positive) and uninterested (negative) (Saranya & Sadasivam,
2017). In addition, the ModifiedCPCC function (AL-Bakri & Hashim,
2018) is the edited CPCC with the same idea used in the FPC and PCCtsim
functions. In 2019, Mu, Xiao, Tang, Luo, and and Yin (2019) improved
the Pearson similarity function by introducing the COPC function. They
used a different value in the Pearson formula instead of the mean or the
median, similar to the scheme proposed by Pérez-Fernandez, Sader, and
Baets (2018). This value is differently chosen for each task. In 2019,
Ayub et al. (2019) used both user and item average ratings in the Pearson
formula. The resultant similarity is called the improved Pearson simi-
larity measure and denoted by Simpgc. Finally, the General-
izedDiceCoefficient function (Luo, Xia, Zhu, & Li, 2013) is the same as the
new Pearson function with eliminated radical in its formula. This func-
tion has been used in incremental topics to perform fewer calculations.

2.2. Cosine and its extensions

Another traditional similarity function in recommender systems is
the Cosine function. This function first transfers inputs to the vector
space and then utilizes the angle between two rate vectors as the degree
of the similarity of two users (Al-bashiri et al., 2018). The Cosine
function is known in some works as the 1-norm (Spertus et al., 2005;
Bagchi, 2015) and defined as (Ricci et al., 2010; Jannach, Zanker, Fel-
fernig, & Friedrich, 2010):

SRR
Ve R[S (R

Many extensions have been proposed for the Cosine function. WUP,
(Boutet et al., 2018) uses all rated items of the first user and the co-rated
items of the second user in computing the formula. Thus, the similarity
values obtained in this function are asymmetric, unlike the Cosine
function. The most popular extension of the Cosine function is
RawCosine (Aggarwal, 2016). Since the numerator of Cosine formula is
deducted from the set of co-rated items, the RawCosine function uses
this set in the denominator of the fraction as well. AdjustCosine and
Adjust2Cosine (Ricci et al., 2010; Ahn, 2008) are two extensions of the
Cosine function which are defined similar to Pearson. The AdjustCosine
function calculates the average based on the users rating while the
Adjust2Cosine function uses the items rating for calculation of the
average. Another extension of the function is CosineUnion (Feng, Fengs,
Zhang, & Peng, 2018) introduced in 2018. CosineUnion extends the
definition of Cosine to a larger set of items (the sum of items rated by at
least one of the two users). The aim was to blueuce the impact of Sparsity
and maximize usage of the available information. The numerator of the
Cosine function called IP —sim (Lee, Park, & and Park, 2007) which
solves problems of the function such as negative similarities and the
denominator of the zero fractions as well as the normalization problem
in Cosine.

(2)

Cosine | u,v

2.3. Distance functions

Similarities can be evaluated based on the concept of the user’s
distance. The idea assumes that the similarity between users is
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Table 2

ML100k, kn neighbours = 50. (See below-mentioned references for further information.)

Similarity functions for users u and v, dataset:
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increasing with decreasing distance between them (Bagchi, 2015). The
distance is calculated via the formula:

Ry — Ry (3)

>

iel, Ny

Distance | u,v —<

where different values of the parameter p yields a different distance
function. The distance function has been studied in different literature
(Huang et al., 2018; Schwarz, Lobur, & Stekh, 2017; Arsan et al., 2016).
The analysis reported by Schwarz et al. (2017) revealed the Pearson and
Cosine functions have faults while the inverse Euclidean distance be-
tween two vectors increases the accuracy of the similarity. Hence, many
distance-based similarity functions have been proposed including
Euclidean distance (Baxla, 2014) (2-norm), Hamming distance (Wang,
Zhao, & Hong, 2015), Manhattan distance (Candillier, Meyer, & Fessant,
2008) (1-norm), Quasi distance (Jiang, Fang, An, & Lavery, 2019), simED
distance (Sun et al., 2017) and MMD distance (Irish, 2010). Among
these, MMD is the most famous commonly used function for distance
calculation in non-metric spaces. NRCF (Sun, Zheng, Chen, & Lyu, 2011)
is another distance-based similarity function that first normalizes all the
rates of each row of the matrix to obtain numbers in the interval [0,1],
and then, uses an idea like to the Euclidean distance to evaluate the
similarity. The Hellinger distance function, which is defined in the sta-
tistics to calculate the separability of two discrete probability distribu-
tions, was used by Mu et al. (2019) to compute the similarity in
collaborative filtering. In 2019 Moghadam, Heidari, Moeini, and
Kamandi (2019) have introduced another distance-based function that
evaluate the similarity using an exponential function.

2.4. Jaccard and its extensions

In 1998, Koutrika and Bercovitz introduced the Jaccard function for
calculation of the relationship between two users (Al-bashiri et al.,
2018). The Jaccard function only considers the number of co-rated items
between two users without using the actual value of the ratings
(Leskovec et al., 2014). This is known as one of the weaknesses of the
Jaccard function (Saranya & Sadasivam, 2017). The function is
defined as:

Jacc (u., v) =

Many similarity functions have been proposed based on the Jaccard
idea. ExtendedJaccard (Ayub, Ghazanfar, Maqgsood, & Saleem, 2018)
introduced to involve the value of rates in the similarity calculation. The
JaccardUniformOperatorDistance (Sun et al., 2012; Saranya et al., 2016)
similarity function tries to find an accurate way for calculation of sim-
ilarity by integrating the rate vector space. In 2018, Ayub et al. (2018)
introduced another definition of Jaccard called myJaccard. In addition to
the number of co-rated items, the equality of ratings and average ratings
of users are involved in this function for evaluating similarity. In 2019,
Niu (Niu et al., 2019) proposed an extended Jaccard function for
computing the similarity with popularity normalization. The Dice-
Coefcient function provided by Al-Shammari (Al-Shamri, 2014) is the
same as the Jaccard function, with a difference in multiplying the
number of co-rated items by two. The RoundingtheData (Leskovec et al.,
2014) function removes the rates less than a certain value in the rating
matrix and then keeps all remaining rates the same using the similarity
criterion Jaccard. The Tanimoto (Arsan et al., 2016; Guo, 2014) and
TermSimilarityWeight (Rupasingha & Paik, 2019) functions like
Jaccard, do not consider the ratings. They consider the similarity

LN L]
|, UL

€]
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between two sets of items via the ratio of the intersection of two sets.
The Srs (Pirasteh, Hwang, & Jung, 2015; Rupasingha & Paik, 2019)
function measures the degree of correlation between the ratings of co-
rated items between two users. Of course, the idea of this function is
also derived from the Jaccard function. Another function that can be
included in this category is the like —mindedSimi function that was
introduced in 2017 by Saeed and Mansoori (2017). This function first
divides the ratings of each user into three categories, and then
considers the similary of each two users equal to the total number of
intersections in each category to the total number of rated items.
Based on the same idea as likeminded, in 2018, Sreepada and Patra
(2018) introduced another function with a difference by dividing the
rates into two categories. The CBMR similarity function is also
proposed by Kim, Kim, and Min (2019) with the same idea as the
Jaccard function.

2.5. Improved Pearson and Jaccard correlation (IP1J)

In 2015, Liang, Ma, and Yuan (2015) introduced the IPCC (Improved
Pearson Correlation Coefficient) and IJacc (Improved Jaccard) similarity
functions. To calculate the IPCC function, first, changes are made on the
rates and then Pearson is applied to them. Changes on the rates are done
for the items having several users who rated this item less than a
threshold, and thus, these ratings will be worthless. The threshold value is
evaluated experimentally. Then, for both users the number of items is
enumerated including the positively rated item by both users, the nega-
tive rated item by both users, a positive and a negative rated item by these
two users, and finally, a positive or negative rated item by a user without
rating by the other user. Estimation of the similarities between two users
is calculated based on the Jaccard’s idea on these numbers. The final IPLJ
and IPALJ functions are obtained via the following formulas:

IPIJ(u,v) = IPCC(u,v)*Jacc(u,v)

IPAII (1, v) = a*IPCC(u,v) + (1 — @)*Iacc(u,v), a=0.7
s Pl g Nl E
P ) ,
|Users| |Users| |Users|
PIUES SO SRR
IJacc(u,v) - icPA fena ‘T
DS PORE) SV I Z\/ﬁ S V/sss
i€PA b=t = 2
> (rz’a' - F_L) <’(=I- - Z)
IPCC u V _ iel,NI,
> (- o —7)
i€l,Nly xeluﬂl\
||L1_;l|| *Rui if |Ui|<H
’jui =
Ry oWw.

()

2.6. Triangle Multiplying Jaccard (TM.J)

In 2017, Sun et al. (2017) introduced a similarity function made from
the combination of similarities of Triangle and Jaccard. The Triangle
function uses the length and angle between two rating vectors while the
Jaccard function considers the number of co-rated items.
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2
Zieluﬁl\ (Rui - Rvi)

1-—
\/Zielumlv (Rui)z + \/Zieluﬂl“ (R‘,i)z

In 2019, Yan and Tang (2019) proposed an algorithm similar to this
idea. The algorithm first carries out a clustering on users and items, and
then, computes the similarity by combining the Jaccard and Triangle
functions in a different way.

©

TMJ(u7 v) = Jaccard(u, v) *

2.7. Mean Squablue Difference (MSD) and its extensions

The MSD function measures the similarity using the value of rates
(Shardanand, 1994; Hassanieh et al., 2018; Sivaramakrishnan, Sub-
ramaniyaswamy, Arunkumar, Renugadevi, & Ashikamai, 2018).

Z/‘el,,ﬁlp (Ru/' - Rw’)z

7
I, N1 @

MSD(u,v) =1—

A special type of MSD is called JMSD (Bobadilla, Ortega, Hernando,
& Bernal, 2012; Bobadilla, Serradilla, & Bernal, 2010) that combines the
MSD and Jaccard function to slightly cover the disadvantages of each
other using all the rates that are recorded by two users. However this
function is still suffering from the cold start problem (Saranya & Sada-
sivam, 2017; Bobadilla et al., 2012). CJMSD is another function pro-
posed by Bobadilla, Ortega, Hernando, and Arroyo (2012) face with the
problem of long computation time because it has to use the dependent
and independent ratings for each pair of users. Note that this function is
asymmetric. In another work, Bobadilla, Ortega, Hernando, and de
Rivera (2013) proposed the Bit/MSD function similar to the JMSD.
Regarding the existing common problem in long processing time for
computing similarity and selecting n neighborhoods, Bobadilla et al.
tried to blueuce the computational time by considering the problem in a
binary view. The BitJMSD function consists of the BitJaccard and BitMSD
functions. the BitJaccard function first marks unrecorded rates as un-
known, and then, converts the rates more or less than a threshold y to one
or zero, respectively. Then, it computes the Jaccard function (This idea is
used in the Jaccard function as Roundthedata). In the sequel, the BitMSD
function calculates the similarity value by checking whether the ratings
of two users are identical or not.

2.8. Spearmans rank correlation (SRC) and its extensions

The SRC function has been introduced in literature (Ahn, 2008;
Bagchi, 2015; Sivaramakrishnan et al., 2018) with some differences with
the following formula:

6" > Rii —Rf,-

iel,Nl,

LNl ( LOLP - 1)

SrankC is an extension of this function used in some studies (Ahn,
2008; Bagchi, 2015; Singh, Setta, & and Rajput, 2019; Kwon, Lee, & and
Hong, 2009). In this function, the rates are first sorted, and then, their
rank is used in the above formula instead of the rated value. SC (Ricci
et al., 2010; Levinas, 2014; Bobadilla, Ortega, & Hernando, 2012) is
another function in this category that first sorts the rates in descending
order and assigns a rank for each rate. Then, it computes the Pearson
function using the obtained ranks. This function acts well when the size
of the dataset is small and the requiblue time for computation is low.

SRC(u,v) =1— ®)
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2.9. New heuristic similarity model (NHSM)

The PIP (Ahn, 2008) function computes three mathematical factors
from the rate of co-rated items for both users to measure the similarity
between them. The factors are the distance between two rates, the
popularity degree of the ratings (higher rating, more interest) and the
difference between them. The obtained values from this function are
very large as well as the processing time and complexity of the
calculations are also high. This heuristic similarity measure is
composed of three factors of similarity including proximity, impact,
and popularity, and hence, the measure is named PIP.

Simi(u,v) = Y PIP(Ry, Ry:)
iel,Nly,
PIP(R,;,R,;) = Proximity(R,, R.;)*Impact(R,;, R.;)* Popularity(R,;, R;)
©)

Liu et al. (2014) proposed a heuristic similarity function called
NHSM that computes similarities based on local information between
users and items as well as global information. The NHSM function is as
famous as the Cosine and Pearson similarity functions. Liu et al. also
introduced the PSS function that is similar in idea to the PIP function,
except for using the nonlinear sigmoid function to penalize and
encourage instead of the linear function used by PIP for this purpose.
URPsim (Liu et al., 2014) is another function introduced in this work.
This function supposes that one user may tend to rate high while the
other tends to rate low. Furthermore, the NHSM function is derived from
the combination of URPsim, PSS, and Jaccard. In this function, the ob-
tained values are very small while the computation time and its
complexity are also high. The key point is that the function is not
exclusively dependent on the co-rated items and the similarity
evaluation is done with the global view. The PSS measure is also
composed of three factors of similarity including proximity,
significance, and singularity, and hence, the measure is named PSS.

PSSsimi(u,v) =Y PSS(Ru,R.)
iel,Nly,
PSS(Ryi,R.i) = Proximity(R,;,R,;)*Significance(R.i,R,;) *Singularity(R,;,R.:)
(10)

NHSM (u,v) = PSSsimi(u,v)*JaccSim(u,v)*URPsim(u,v)
1 an

URPsim| u,v | =1— ———
l+exp(7 R, —R, )

Son (Son, 2016) selected some typical algorithms from three main cat-
egories algorithms for recommender systems to compare their perfor-
mance. In this comparative study, the NHSM similarity function was
selected as the representative for the collaborative filtering methods. As
it was reported in this article, the NHSM function yields higher accuracy
and lower computational time, while other methods use additional
information.

*

0y — Oy

2.10. MultiLevel

Polatidis and Georgiadis have introduced the multilevel algorithms
(Polatidis & Georgiadis, 2016; Polatidis & Georgiadis, 2017) in the field
of the collaborative filtering approach. The basic idea behind these
functions is to divide the similarity between two users into multiple
levels based on the existing constraints. Then, the similarity is computed
at each level using the Pearson similarity function. In the first algorithm
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(Polatidis & Georgiadis, 2016), the number of levels is fixed, while in the
second algorithm, published a year later in 2017, the number of levels is
dynamically determined.

|[L N

Pearson(u,v) +x if Tv>t1 andPearson (u, v> >y

I,NI,
Pearson(u,v) +x if O L]

simi(u,v) = LN, NI,
S'lml(ll V) lf | |\ d‘ ‘

Pearson(u,v) + x

fran

I, N1, I,NI,
if | |\ nd‘

Pearson(u,v) + x ha

0 otherwise

where t,ty,t3,t4 and T is the pre-specified thresholds. In 2018,
Alshammari, Kapetanakis, Polatidis, and and Petridis (2018) proposed
the IBCF similarity function based on the Triangle similarity function and
the Multilevel function. This function uses the Triangle function based on
the Multilevel (Polatidis & Georgiadis, 2016) scheme instead of the
Pearson function. This function uses the same values of the
hyperparameters.

2.11. Significance, default values, and fuzzy set (SDFS)

The SDFS similarity function was proposed by Saeed and Mansoori
(2017) in 2017. They first introduced a function namely DFS using the
fuzzy T —norm and S —norm operators. This function does not necessarily
depend on the co-rated items. The final similarity is called SDFS and
calculated by using the DFS function.

Min (Z e Iyyw; (u, v) ,y)
SimiSDFS | u,v | = ! *SimiDFS | u,v
4

13)

where Iyy is intersection or union of I, and I,.}
2.12. Mean, Jaccard, and differences (MJD)

The Pearson’s similarity functions and other traditional similarity
functions used in recommender system only use the numerical values of
rates. The idea of the MJD similarity function is to enable extraction of
additional information from the ratings such as rate distribution, the
number of each rate occurrence, and so on. Thus, the similarity between
two users is computed by using both the numerical values and additional
non-numerical information. The MJD similarity function introduced by
Bobadilla et al. (2012) obtained from the linear combination of several
similarity functions as:

MJD (u, v) = é (wlvU (u, v) +wyv! (u,v) + wyy? (u,v) + wy? (u,v)

+ wsp (u, v) + wﬁlaccard) (14
whereas VX is the number of items whose rate difference is k and w;
obtained in the neural network learning process. In addition, the
average and standard deviation of difference of co-rated items’ rates are
calculated after normalization of the rates. Finally, the weight of each
segment is obtained using an artificial neural network.

“>t; and Pearson (u, v

>t, and Pearson (u, v
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2.13. Singularity measure (SM)

Since the traditional similarity functions in recommender systems
calculate the similarity between two users based on the rates recorded

I,NI,
\tland‘ “ T ‘>t2 and Pearson (u, v> >y

o @

o

for the co-rated items without considering the concept created by the
user, their output has usually an error. Suppose two users share a
similar rating for an item, but this rating differs from other user’s
ratings. This fact is strong evidence for the high similarity between
two users. However, if the ratings recorded by these two users are the
same as those rated by others, there is no evidence to obtain any
similarities between them. The SM (Bobadilla et al., 2012) function
tries to accurately calculate the similarity between users by extracting
this kind of hidden information among the ratings for the items. The
function divides the ratings for the MovielLens dataset into two
categories including the positive and negative ratings. First, it
computes the singularity of the high rates (S,) and low rates (Si,) for
each item. Then, for both user u and v, it assumes A as the set of all
items rated high, B as the set of all items rated low, and C as the set of
all items rated differently by two users. Finally, the similarity is
calculated via the formula:

SM (u,v) =
1]1 2 /a2
g |:|AZ |:1 - (Rm' 7Rvi) (SP)
1 2 i % Qi
+WZ 1— (Ri—Ry) (SP SN)”

ieC

In 2020, A nonlinear function (Jin, Zhang, Cai, & Zhang, 2020) was
introduced to calculate the similarity whereas the singularity factor was
used to weight the similarity. The proposed algorithm not only applies
the user’s co-rating items information but also takes into account the
overall rating data effectively using context information. The singularity
factor used in this article (SimiLocal) slightly is similar to the SM
function.

1 2 (i \2
+ EZ |:1 — (R — Ru)*(Sy) :|

i€B

(15)

SimiLGGfinal(u,v) = SimiLocal(u,v)*SimiGloball (u,v)*SimiGlobal2(u, v)

16)
101,
SimiGloball (u,v) =1 —exp(— 1"‘" ] ‘) a7
r —_— —
SimiGlobal2 (u, v> =Y VVu)*W(1), T=5 (18)
=1

They defined the user u ratings as a vector V. = (fi.f2s ... fr), the

—_—
user v ratings as a vector V,, = (Ij,b,...Ir), and f;, I, indicate the number
of users rated the score as t.
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2.14. Discount

There is a belief that when the number of co-rated items is lower than
a threshold, the computed similarity is less reliable. Thus, the similarity
functions calculate a low similarity for these users (Aggarwal, 2016;
McLaughlin & Herlocker, 2004).

Min{|Il, N L|,p
Discount (u, v) = Simi (u, v) *M

In these articles, the Pearson and Cosine similarity functions are used.
However, in another article (Symeonidis, Nanopoulos, Papadopoulos, &

(19)

E SVuv,i

iel, N,

L.NL| "’

SAD (u, v) =

J (Ra= ) (R =R (1) (ko — R.) 20una (R, ~ R.)>0
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2.17. Statistical attribute distance (SAD)

The SAD similarity function was presented by Weng et al. (2005).
This function integrates the statistical information of rates with the
calculated similarity. Suppose a particular item i is liked by most users.
The idea behind this function is that if two users’ opinions are negative
against that item, those two users are more alike than other pairs of users
whose opinion is positive.

(22)

Viwi = \/ (Rui - Rj) * (Rv,» - E) (1 s ) if(Rm- - RT) < Oand (R“,- - RT,) <0

else

and Manolopoulos, 2006), the same function definition is referblue to as
the weighted similarity function, and the Max function is used instead of
Min in the above formula.

2.15. Statistic-based cOllaborative Filtering Algorithm (SOFA)

SOFA (Yao, Yuan, Xie, & Chen, 2013) computes the similarity using
statistical information. It first uses the Pearson or Cosine similarity
function to find the similarity between two users. If the number of co-
rated items is lower than the threshold, it does not consider the
similarity to be reliable and assigns zero to this similarity. Through
another way, the function re-measures the similarity by using variance
and average of the ratings. Eventually, the ultimate similarity is evalu-
ated by combining these two values.

R,*R, + 62*0?

\/(R_u+a§)*(R_v+a§)

2.16. Proximity, number, and ratio (PNR)

SOFA | u,v :% Simi | u,v | + (20)

Wu, He, Ren, and Xia (2008) improved the urban block distance
(Manhattan or boxcar) and introduced the PNR function. They try to
provide a function that accurately calculates the similarity based on co-
rated items, including the number of co-rated items in calculations, and
also has a low computational time. As they reported in their article, the
PNR function has obtained more accurate results than other functions.
The function works based on three factors including proximity and
similarity between co-rated items, number of co-rated items, and the
ratio of the users’ co-rated items to all rated items.

PNRsim(u,v) = P(u,v)*F(u,v)*G(u, v) (21)

The P(u, v) factor is the similarity of rates of co-rated items calculated
by using the Manhattan distance. The value of P(u,v) alone does not
represent the similarity between two users correctly, because when
the number of co-rated items are low, the formula may calculate a
large number. The F(u,v) and G(u,v) are used to influence the number
of co-rated items and the ratio of co-rated items, respectively.

18

2.18. RAtio-based (RA)

In 2017, Wu, Cheng, and Chen (2017) introduced the RA similarity
function based on the ratio of rates. This function sometimes yields
better results than Pearson, Cosine, and NRCF.

Z Min(Rui Ryi)
i€, NIy Max(Ryi Ryi)

|I,N1,

RA| u,v (23)

2.19. CosineRec

The CosineRec (Jeong, Lee, & Cho, 2010) function was introduced in
2012 to improve the accuracy by updating traditional functions. Cosi-
neRec is the first function based on the repeated message sending. In
other words, the function calculation is repeated recursively until its
convergence. It should be noted that the function has a long computa-
tion time.

simi(u,v) = res(u,v) +av(u v)

—Max,cyers, n#v{av(u W) + simi (M

res u, )7Slml u, W)}
>

av (u v) Min {0 res (v v) + Max{O, res (w,v) }}
weUsers, w#u,w#v
av (v, v) = Z Max{O7 res <w,v> }
weUsers, w#v

2.20. Conditional probability-based (CPB)

(24)

The CPB function which was presented by Deshpande and Karypis
(2004) uses the conditional probability to compute similarity. It is an
asymmetric similarity function that is computed via the formula:

B Freq(uv)
CPB (u, v>  Freq(v)(Freq(u))” (25)
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2.21. Relevant Jaccard mean square distance (RJMSD)

RJMSD (Jin et al., 2020; Bag, Kumar, & Tiwari, 2019) makes full use
of all the scoring information to get the relevant neighbors of the user.
The proposed similarity calculation model can make pblueictions easily
and efficiently via the formula:

2
1 * Ziél,mlr (Rui B Rv[)

RIMSD | u,v | = ( 1- YR

2.22. Rating frequency based similarity (RFS)

The RFS function is presented by ur Rehman, Hussain, and and Hus-
sain (2013). The function calculates the similarity between two users
based on their ratings and the number of times the discrepancy occurs.

Z[E[l,RNG]Fi*i/RNG

RFS(u,v) = 27)

> iE[l,RNG]i/RNG

2.23. Raw Moment Similarity (RMS)

The RMS similarity function was proposed by Kwon and Hong
(2011); Kwon and Hong, 2013, this function tries to calculate the sim-
ilarity in a probable manner using the rate differences.

n

RMS (u,v) = 1 —% % SRy Rl =1 _% > Pr(D =d.)d!
z=1

i=1

(28)

2.24. REsonance Similarity (RES)

In 2017, Tan and He presented the RES (Tan & He, 2017) similarity
function inspiblue by the Physical Resonance Principle. This function
consists of three parts. The first part refers to the consistency of two
user’s ratings, which is measublue by the angle between them. The
second part is the distance criterion, which is calculated based on an
exponential function. The third part is the Jaccard function. The RES
function is generally used to overcome the existing problems with the
Pearson and Cosine functions.

SimiRES 1.y :ArcTan(RES(u, v))
0.57

RES <u,v> :ZC (u,v.]q) *D (u,v,kz,k3> *J <u,v,k4>
L0l

o (u,wkl) =(1/0.5+0.5*Cosine(¢p(u) — ¢(v))) "

P(u)=
mnp- ,when <RM~ 7R,,,e,,) * (ij ,4) <0
— — ko _
exp (0.5* ( Ru—F; ’ +|Ri—T; ‘ ) ) ,when (R,,,» - Ri) (R,,,- -
D\ uv,ky,k3 | =

exp( - |Rui —Ry; ‘ )kl
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The function is optimized over the values k;, k2, ks, and k4 to obtain the
optimal values of these variables and minimize the minimum square
error (MSE).

(26)

2.25. New User Similarity

The NewUserSimilarity (Shen & Zhou, 2010; Xiaoping, 2015) function
is based on the idea that when two users submit a rating for an item, they
have the same opinion and are similar. For this purpose, the following
two criteria are calculated, and then, the final similarity value is ob-
tained from the linear or exponential combination of these two criteria.

clu,v| = Z I — | Ruax — Rinin *
iel,Nl,

d(u,v) = (L] = L N L]) + (|L] = L N L])

Ru[ - Rv[l (30)

2.26. Bhattacharyya Coefficient Function (BCF)

Because similarity functions have been mostly defined on co-rated
items, they do not work well on sparse datasets. Patra, Launonen, Olli-
kainen, and Nandi (2015) and Patra, Launonen, Ollikainen, and Nandi
(2014) proposed the BCF similarity function based on the Bhattacharyya
Coefficient, which uses all recorded ratings to measure the similarity
between two users. The Bhattacharyya criterion is used in different
research works such as image processing, signal, and pattern recogni-
tion. However, here it measures the similarity between two users by
computing two probability distributions via the formula:

BCF (u, v) = Jaccard (u, v) + ZZBC (i,j) *loc (R“,-,RW)
icl, jel,

where BC and loc calculate the similarity between two users based on
global and local information, respectively. The Jaccard function was
used to increase the effect of the number of co-rated items. The

(3D

29

)20

7When (Rui 7Ri!) (Rvi 7E> <0
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disadvantage of this function is that if two users rate a small set of items
or there is no common rated items, it is not able to calculate the simi-
larity. Besides, it cannot overcome the scalability problem and its
computation is complex (Saranya & Sadasivam, 2017; Nadine, Cao, &
Deng, 2016).

2.27. ModifiedHeuristic

The ModifiedHeuristic (Saranya & Sadasivam, 2017) function is
designed based on the Jaccard, PSS, and BC similarity functions. The
main motivation in defining this function was to overcome the low
coverage and accuracy of the existing functions due to the sparsity and
scalability problems. It therefore uses the Jaccard function to exploit the
global and local information. On the other hand, ModifiedHeuristic uses a
modified BC function to cover the weakness of the BC function in pro-
ducing zero at its output when two users differently rate the same item.
This function also considers the divergence in rating by two users in the
computations. Additionally, it employs the PSS function to incorporate
the values of two users’ rates into the calculated similarity.

ModifiedHeuristic (u7 v) = w*Jaccard (u, v) + wy*PSS (u, v)

1
+
1+ exp( — [BC(u,v)])

(32)

2.28. Hybrid

If the similarity between two users depend only on co-rated items,
employing symmetric function can be useful. Nevertheless, the items
and the rate value of two users are different, and thus, the similarity
function is dependent on all the rates submitted by users, and an
asymmetric function will work properly. For this purpose, in 2017,
hybrid (Wang et al., 2017) similarity function was proposed based on the

Ziel“ml‘. (Rm' - R7u) (Rv[ - E) *rel <u~, ) lv])
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where Si.m is calculated from the kullback —leibler criterion. Its differ-
ence with the above hybrid function is in applying the A criterion. Also,
S(Rui, Ryi) is calculated using an exponential function.

proposedSimi is another function introduced by Feng et al. (2018) in
2018 based on a similar idea used in the hybrid function:

proposedSimi(u,v) = Sy (u,v)*S, (u, v)*S5(u,v) (35)
where the S, and Ss3 functions are calculated similar to S, and Ss in the
hybrid function with a slight difference, while the S; function is calcu-
lated via the CosineUnion function.

2.29. ItemWeighted

In general, there are many implicit assumptions in the proposition of
algorithms in the collaborative filtering approach (Bobadilla, Hernando,
Ortega, & Gutiérrez, 2012): (1) there is no difference between users, (2)
there is no difference between the items in the system, and (3) There is
no difference between the ratings that users submitted. Some re-
searchers emphasize on the idea that all items used in the computation
of similarity should not have the same weights. Based on this idea, the
items with high similarity to the target item should have bigger weight
(Bobadilla et al., 2012; Zhang & Andreae, 2008; Choi & Suh, 2013).
Several similarity functions have been suggested based on this idea
including WeightedDistance (Huang & Dai, 2015), INSC (Zhang &
Andreae, 2008), PCCEdited, CosineEdited, and EEdited (Choi & Suh,
2013). In these functions, first, the similarity between the target item
and other items is measublue using a function (usually using the Pearson
or Cosine function). Then, for each target item, the similarity between
two users is calculated using an extension of the Cosine or Pearson
functions. These functions generally identify a different set of neighbors
for each target item of the active user. It should be noted, however, that
computation in these similarity functions is highly time-consuming.

INSC | u,v,i

(36)

combination of the kullback —leibler and PSS similarity functions. The
main aim of designing this function was to use all item ratings.

hybrid <u, v) =S, (u, v) *Ss (u, v) * (Zzsnem <i=j> *S (Rm,Rq))
icty jly

33)
The nonlinear similarity function S; is slightly similar to the PSS simi-
larity function. The Sy, function is used to prevent the effect of large
amounts of S; in different input cases. The S, has a substantial impact
on the final similarity value. Thus, it should be defined in a way without
exclusive dependence on co-rated items and considering all ratings in its
calculations. These desiblue properties are obtained using the
kullback —leibler function. The S, and S3 functions are defined asym-
metrically using the number of co-rated items, mean and standard
deviation.
In 2018, Deng et al. (2019) proposed another function based on a
similar idea with a minor difference. The function calculates the simi-
larity via the formula:

SimiKL (u, v) = Zzsilem (Lj) *S (Ruh Rvj)

icl, jel,

(34)

= — —
\/Zieml\, <Rm» - Ru) *rel(u,v, i,j) *\/Ziemu <Rvi - R,,> *rel(u, v, i7j>

20

2.30. Similarity functions based on significance

Regarding the aforementioned three implicit assumptions of the al-
gorithms in collaborative filtering, Bobadilla et al. (2012) introduced the
significance function based on a new approach. Using the function, the
importance of an item (S;) is measublue first based on the amount and
number of rates it has earned. In addition, the importance of a user (S,)
is measublue by the number of high and low submitted ratings. Then, the
value of an item per user (S,;) is calculated based on two obtained values
in the previous step, and stoblue in a new matrix. Finally, the Pearson,
Cosine, and MSD similarity functions are employed to calculate the
similarity between each pair of users using this new matrix.
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1 i
Si =\ ZRui * |U |
|Ui| b |Users|

Su ={1- ‘Du' *( - )
|D,| + |E.| |Items|
S.*Si*R,i ,ifR,;exists
o 3 Simi(i, j) *§*R
u JENDry,; ip . .
SM*S,-*Je e ,ifR,;notexists, butS;andS, exist

S Simi (i, j)
JENbry;

2.31. Accordance, Compromise and Similarity (ACsimi)

37)

In 2015, Pirasteh et al. (2015) presented ACSimi which is a weighted
similarity function. ACSimi was constructed asymmetrically using the
traditional similarity functions and the number of items that are not co-
rated. In the definition of this function, there are two factors and a
similarity function. The first factor, named accordance, measures the
impact of each user on their neighbor and vice versa, while the second
factor, named compromise, measures the similarity of ratings regardless
of the items. The similarity functions such as Pearson, Cosine, MSD, and

Srs are used in this function.
IM ﬂ I\’ o8 . .
ACSimi(u ) H H“ < exp<—|1—||)> *Simi (u,v)
(38)

SN .
where V, represents a vector based on user u ratings.

—
‘/M M VL

2.32. Entropy based

In 2015, Wei, Guangquan, and Jie (2015) presented a similarity
function based on the concept of entropy and Manhattan distance. In this
function, the entropy concept was used to identify neighbors properly
while the Manhattan distance was used to overcome the long tail prob-
lem. The function is calculated as follows:

- Z pilog, (p:), SimiE<u7v> =1-

i€l
(1 — a)*SimiE(u,v)

H

log, |1, N1, (39)

SimEntropy(u,v) = a*Pearson(u,v) +

In another attempt in 2015, Li and Zheng (2015) presented a similarity
function by combining the entropy and Bhattacharyya functions. They
believed that each user shows a different behavior in rating. Someone
has interested in high ratings and some others prefer to rate low. The
Bhattacharyya function is a relevant criterion for measuring the overlap
between two users’ ratings, while entropy is a proper criterion for
measuring the rating differences. The function calculates the similarity
via the formula:

En(u,v) = exp( — [H(u) — H(v)[)
( ) {En(u, V) ,ifBC(u,v) =0
Habit| u,v | =
En(u,v)*BC(u,v) ,ifBC(u,v) # 0

(40)
BCE(u,v) = Habit(u,v) + Pearson(u, v)

NBCE(u, v) _ B2 BCEwy))

2-(=1)
On the other hand, the majority of the similarity functions presented for
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collaborative filtering evaluate each pair of rated items individually. As
a result, the global rating behavior of users is neglected. As an example,
the discrepancy in ratings of an item by two users causes a great simi-
larity drop down, even if ratings of other items are the same. Regarding
this fact, in 2018 and 2019, Lee (2018b) and Lee (2019) introduced a
similarity function to model the user rating behavior based on the en-
tropy concept via the formula:

1 Ri—R.)’
PROP| u,v | =1—sig E ( - )
N4 4= EG)

The role of the sig function was to produce an output between zero and
one. In 2018, Lee (2018c) also used the entropy measure as the weight in
the Cosine and Pearson similarity functions:

_ E prob (r: = k) log, (prob (r,- = k))
K€ [Rin sRinax)

> R FRGFE()

i€l NI,

N /Z(Rui)z /Z(Rvi)z
> (Ri—Ro)*(Ri—R)*E()

iel,Nl,
> (Ra-R) [ S (Ri-R)
iel,NI,

iel,Nly

(41D

E(i) =

COSEntropy | u,v
(42)

PCCEntropy | u,v

The WeightedDifferenceentropy function is another similarity function
that uses the entropy measure (Kwon et al., 2009). This function cal-
culates the similarity between two users via the formula:

SimiWDE (u,v) ==Y pld

iel,nl,
Kwon, Lee, Kim, and Hong (2009) presented another function based on
entropy to calculate similarity:

1
SImEW [ u,v | = Simi| u,v |*——————
(1) =) -

H(v)l

)og, (d;) x |di] (43)

(44

Furthermore, the functions represented in Piao, Zhao, and Zheng (2009)
and Piao, Zhao, and and Feng (2007) calculate the similarity using the
entropy measure in a different form as follows:

Simi(u,v) = H(u) +H(v) — H(u,v) (45)

2.33. Combined functions

Among the algorithms presented for neighborhood-based collabo-
rative filtering, there are many algorithms that were designed through
integrating other algorithms (El Alami, Nfaoui, & El Beqqali, 2015). In
2017, Shen, Liu, and Zhang (2017) presented the ImprovedCosine simi-
larity function, which is an improved form of the Cosine function. This
function is presented based on the idea that the Cosine function only uses
local rating information without considering global information,
causing an error in identifying similar users to the target user.

w(u,v) = (m>¢’ ¢e {0’ oo} S

(Cosine(u, v))"™

(46)
ImprovedCosine(u,v) =

In 2018, Duong et al. (2018) introduced the squablueCosine,
squabluePearson, cubedCosine and cubedPearson functions with a slightly
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Table 3

Selected Extentions of each similarity function.

Function Selected Extensions

PCC WPCC, ShrunckPCC

Cosine Cosine, WUP,, IPSim
Distance Quasi

Jaccard JaccardUOD, ExtendedJacc
MSD BitMSD

Entropy CosineEntropy, SimWDE
ItemWeighted WeightedDistance(Cosine, PCC)
ACSimi simi = PCC

Combined weightedPCCJacc

Discount simi = PCC

different idea. They found that at 97% of cases, the Cosine function
produces the similarity between two arbitrary items equal to a number
in the range [0.85, 1] with a coefficient of variation equal to 0.9%. Such a
small coefficient of variation causes an error in identifying similarities
between similar and dissimilar items. The value of the coefficient is
better for the Pearson function, and thus, to overcome the problem and
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take advantage of both Cosine and Pearson functions, they combined
both functions to calculate similarity.

In 2018, Suryakant and Mahara introduced the CjacMD (Suryakant &
Mahara, 2016) similarity function. Since the Cosine function considers
the angle between two rate vectors without taking into account any user
behavioral information, its accuracy is low. Thus, by combining the
Cosine, MMD and Jaccard functions, each user’s taste for voting (some
high-rating and some low-rating) is involved in the similarity
calculations.

CJacMD(u,v) = Cosine(u,v) + Jaccard(u,v) + MMD(u,v) (47)

Other extensions of the Pearson function includes its combination with
the Jaccard function (AL-Bakri & Hashim, 2018; Zhang et al., 2017;
Saranya et al., 2016) as follows:

modifiedSimi(u,v) = modifiedCPCC(u,v)*Jaccard(u, v) (48)
Simi(u,v) = 2*Jaccard(u,v)*WeightedPCC(u,v) (49)
Simi(u,v) = wy*Pearson(u,v) + wy*Jaccard(u,v) w=wy, =0.5 (50)

The COPCHg function was developed by Mu et al. (2019) with

Table 4
results for dataset: ML1M and kn neighbours:100.
function MAE RMSE coverage precision recall Fl-measure Simi =0
1 WPCC 0.7175 0.92411 0.98516 0.82358 0.55612 0.66392 0.081685
2 ShrunckPCC 0.71034 0.916 0.99601 0.8225 0.57701 0.67822 0.081685
3 Discount1(PCC) 0.7175 0.92411 0.98516 0.82358 0.55612 0.66392 0.081685
4 Discount2(PCC) 0.7147 0.92193 0.99748 0.81801 0.58474 0.68198 0.081685
5 ACSimi(PCC) 0.70938 0.9146 0.99679 0.82152 0.57942 0.67956 0.081685
6 Quasi 0.7239 0.93344 0.9984 0.81156 0.57268 0.67151 0.1113
7 SimiSDFS 0.73266 0.94141 0.98102 0.81931 0.51354 0.63135 0.078838
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Fig. 1. Precision and Recall of simi functions.
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Fig. 3. Fl-measure of simi functions.
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combining the Jaccard, COPC and HgDistance functions. The COPC
function was also introduced by Mu et al. in the same article. However, it
is described in the pearson subsection because it is an improvement of
the Pearson function.

COPC — HG(u,v) = a*COPC(,v) + (1 — a)*(Hg(u, v) + Jacc(u,v))  (51)
There are many users whose rating preference behavior is different from
normal users. They tend to rate items according to their behavior. Some
users generally rate the items in low ranges regardless of their goodness
or badness while some others mostly rate the items in high ranges. These
diverse form of rating are called as rating preference behavior (RPB). To
handle such behaviors, Ayub et al. (2019) proposed the IPWR similarity
measure using the standard deviation (SD) of each user via the following
formula. The similPWR similarity measure considers both RPB and
Simypcc by combining both factors using an adaptive weighting scheme.

similPWR(u,v) = a*RPB(u,v) + f*SimiIlPCC(u, v), (52)

RPB| u,v | = Cosine| |R, —R.|*|SD(u) — SD(v)| |, SD(u)

(53)

3. Experiments and Evaluations

Since the primary neighborhood-based algorithms have been
designed as user-based (Kluver et al., 2018), all the reviewed algorithms
in this survey were implemented based on the user-based approach. To
implement a neighborhood-based algorithm, it is necessary to specify
the aggregation function, the number of neighbors, datasets, and eval-
uation metrics. In this section, the experimental setup and the obtained
results by each algorithm are presented.

3.1. The aggregation function and number of neighbors

To pblueict the rating of an item by an active user, the following
formula (Ahn, 2008; Aggarwal, 2016) was used:

o Zverr“,simi<u, v) * <R\,i - R_,>
Ri=R,+
> |simi (u, v)

Nbry i

where Nbr indicates neighbors of the most similar active user. To find
the number of neighbors in the presented algorithms, the Elbow method
(Thorndike, 1953) is mostly used to examine different numbers in an
appropriate range and estimate the optimal number of neighbors. In this
study, the approximate number of neighbors for each algorithm was
obtained from its related article. In most of these studies, approximately,
a number of 50 neighbors used on the ML100k dataset. Accordingly, in
the experiments conducted in this study, a number of 50 users was
consideblue as neighbors of a user to evaluate and compare the simi-
larity functions.

(54)

3.2. Evaluation Metrics

The accuracy metrics for evaluation of recommender systems can be
categorized into three classes including pblueictive accuracy metrics,
classification accuracy metrics, and rank accuracy metrics (Zhang et al.,
2016; Herlocker, Konstan, Terveen, & Riedl, 2004). Pblueictive accuracy
metrics are generally used to compare the quantity of similarity between
pblueicted ratings and real ratings. Mean Absolute Error (MAE) and Root
Mean Squablue Error (RMSE) are two common metrics that are mostly
used in the evaluation of recommender systems. Classification accuracy
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metrics have been adopted from the information retrieval research and
consist of precision, recall, F1-measure, and some other related metrics.
These metrics are used to calculate the fraction of pblueiction, and the
quality of recommendations and search results. Unlike pblueictive accu-
racy metrics and classification accuracy metrics in directly measuring the
quality of the pblueicted items, the focus of rank accuracy metricsis on the
ordering quality of the recommended items. Some commonly used rank
accuracy metrics are the half-life utility metric, the Pearson product-
moment correlation coefficient, and the Normalized Distance-based
Performance Measure (NDPM). Regarding these three categories of
evaluation metrics, none of the cited articles here use the rank accuracy
metrics and they employ one of pblueictive accuracy metrics or classifi-
cation accuracy metrics for evaluation purposes.

Since one of the purposes of this study was the evaluation of the
similarity functions under the same fair and standard condition, the
similarity functions investigated hereby are evaluated using the metrics
used in both categories. The MAE and RMSE evaluation metrics (Peng
et al., 2017) are used with the precision, recall and F1-measure metrics.
The precision, recall, and Fl-measure metrics require an Interested-
Value, which is assigned by different values in different articles. In
this article, the precision-recall definition used by Yao et al. (2013) was
utilized while Interested-Value was assigned three. In addition, the
coverage and the number of zero values calculated by the similarity
function are measublue. Some authors believe that zero values calcu-
lated by the similarity functions affect the accuracy because the function
is not able to get the actual similarities between users (Sheugh & Ali-
zadeh, 2015; Ahn, 2008). To simplify the calculation of the coverage
metric (Aggarwal, 2016), it was consideblue as the percentage of the test
data that their value was estimated by the proposed model. The
coverage along with the MAE metric provides a proper evaluation of the
algorithms. The preference of an algorithm is indicated by a lower value
of MAE, RMSE, and sim0 as well as a higher value of coverage, precision,
recall, and F1-measure.

3.3. Dataset

Regarding the studies on collaborative filtering-based methods, the
MovieLens (ML) dataset is the most popular set for performance investi-
gation. Accordingly, the ML100k and ML1M datasets’ were to evaluate
similarity functions. The ratings in this dataset are integer values ranging
from 1 to 5. The dataset was divided into two groups including training set
(80%) and testing set (20%). In this study, the similarity functions were
utilized on the ML100K dataset consisting of 100000 rates recorded by
943 users for 1682 movies having a sparsity of 93.7%. The 5-fold cross-
validation technique was used over the ML100k dataset to calculate the
average of the criteria shown in Table 2. The functions obtained high
performance on the ML100k dataset were chosen to be examined addi-
tionally on the ML1M dataset. The ML1M dataset contains 1000209 rat-
ings, 6040 users, and 3952 Movies with a sparsity of 95.8%. The results of
applying these algorithms on the ML1M dataset are shown in Table 4.

4. Discussion

Generally, recommender systems face three major challenges
including sparsity, scalability, and cold start. Many similarity functions
have been developed to deal with these challenges and blueuce the rate
of errors caused by them in the recommender systems. In this review, the
neighborhood-based collaborative filtering similarity functions have
been collected and their performance has been investigated under equal
conditions based on the evaluation metrics. However, comparing the
ability of these functions to overcome the abovementioned three chal-
lenges in recommender systems is not consideblue in this study and it
may be the subject of another article.

! http://grouplens.org/datasets/movielens/
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It is clear from the initial results that the coverage of the IBCF,IPlLJ,
SimEW (Euclidean), PROP1, EEdited functions is very low (less than 40%),
and comparing their performance with those of other similarity func-
tions is not fair. Table 3 shows the selected extensions of each similarity
function family which obtained a comparable performance with other
functions. For example, among different extensions of the Pearson
function, WPCC and ShrunkPCC obtained the highest performance and
selected for further comparison. Besides, the MAE, RMSE, and coverage
results of these two functions are significantly different from other ex-
tensions of the Pearson function. It should be noted, however, that both
functions obtained the highest values in terms of precision, recall, and
F1l-measure within the Pearson extensions. These functions have been
proposed regarding that for the number of co-rated items less than a
threshold, the similarity accuracy will be low, and thus, it is necessary
to decrease their effects. This is while the attempts by similarity
functions to model the long-tail property in similarity computation
have failed in improving accuracy.

Figs. 1-4 comparatively show the scores obtained by the investigated
functions. Performance of these functions is higher than all other func-
tions discussed in this survey. It can be seen from Fig. 2,

WPCC, ShrunckPCC, JaccardUOD, NHSM, Quasi, WeightedDistance

(Cosine), ProposedSimi(p = 1), Discount(PCC),

ACSimi(PCC), WeightedPCClJacc,RES

and SimiSDFS are the best in pblueictive accuracy metrics in terms of
MAE and RMSE (the lower, the better), where they obtained values less
than 0.75 and 0.96, respectively. These threshold values were chosen
regarding that the best obtained results for MAE and RMSE were 0.74
and 0.955, respectively. These functions obtained lower MAE and RMSE
errors in the estimation of ratings. Regarding the ability of these func-
tions in classification accuracy metrics,

WPCC, ShrunckPCC, IPSim, ExtendedJacc,

BitMSD, PIP, MultiLevel2016, Quasi, WeightedDistance(PCC), CPB,
ACSim(PCC), ACSim(Cosine), RFS, Discount, LGGfinal, NormalizedExpDis,

COPC — Hg

, and SimiSDFS yielded favorable performance in terms of F1-measure.
Regarding that, the precision and recall metrics are not informative
enough for evaluation of the functions, the Fl-measure was used to
combine them and calculate a more informative metric. The F1-measure
of these functions were greater than 0.59 (The higher values obtained in
the evaluation). In overall, investigation of the functions to determine
their capability in both points of view revealed that the WPCC,
ShrunckPCC, Discount(PCC), ACSimi(PCC), Quasi and SimiSDFS functions
obtain the best performance.

An important finding in these comparisons is that the ItemWeighted
functions, which require a great deal of time to perform calculations,
could not achieve a rank in the set of final functions. Besides, the entropy-
based functions have not also yielded significant results (Have higher
MAE error and lower Fl-measure). These are while simple functions
having low complexity and reasonable computation time yield better
results. As an example, the IP —sim function is a simple function for
calculating similarity which produces highly accurate results in our
evaluation.

The set of selected similarity functions was further examined on the
ML1IM dataset. Table 4 represents the results obtained by different
functions on this dataset. In this evaluation, the number of optimal
neighbors for each similarity function were determined and their
intersection was consideblue. Additionally, the optimal number of
neighbors was defined 100 in this experiment. The outcome of this
investigation indicates that the examined functions do not have a
particular superiority to each other. This observation is due to a little
difference in the values of the evaluation metrics. However, regardless
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of this point, ACSimi(PCC),Discount(PCC), and ShrunckPCC obtained the
best performance among these functions with an epsilon difference. In
this view, this difference is so small, and thus, these similarity functions
(except SimiSDFS) have approximately high accuracy. In other words,
these functions obtained more accurate results on the MovieLens data-
sets than other functions.

5. Conclusions and Future work

In this paper, the main effort was to provide a comprehensive review
of the neighborhood-based similarity functions with a rating oriented
perspective. The investigated functions in this study were developed and
examined on the ML dataset to provide fairly evaluation and comparison
of their behavior. After investigation of the functions based on the
precision, recall, coverage, F1-measure, RMSE, and MAE metrics, the
results of experiments indicated that WPCC, ShrunckPCC, Discount(PCC),
ACSimi(PCC), and Quasi show remarkable performance and outperform
other similarity functions. It is expected that the results presented in this
paper to be a complete reference for the future studies in analysis and
evaluation of novel similarity functions.
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